E

API| SECURITY IS TOO HARD!?

FEATURED PRIVACY TECHNOLOGY

Just a handful of Android apps exposed the data o
more than 100 million users

By Catalin Cimpanu - May 20, 2021

Business

Mobile Health Apps Systematically

Expose Pll and PHI Through APIs, New

gindings from Knight Ink and Approov
how

9 February 2021, 12:00 CET

The cowboy years are over. Security is a crucial
requirement for every application from day 1,
and not an afterthought for a quiet period.

, @PhilippeDeRyck

| am Dr. Philippe De Ryck

@ Fragmatic Weh Securlty Founder of Pragmatic Web Security

Security for developers

) 4 ExglpDe}’Es Google Developer Expert

AMBASSADOR Auth0 Ambassador

R o G R A M

A Sccure

@) icati]
- D elaoment SecAppDev organizer

| help developers with security

Hands-on in-depth security training

@ Advanced online security courses

Security advisory services

https://pragmaticwebsecurity.com

Reverse Engineering Bumble’s
API

When you have too much time on your hands and want to dump out
Bumble’s entire user base and bypass paying for premium Bumble
Boost features.

Sanjana Sarda | Follow
Nov 14 - 8 min read ’ ﬂﬂ ﬁ []

DO NOT RELY ON CLIENT-SIDE AUTHORIZATION

* Client-side authorization is common in API-based applications
* Frontend applications typically need authorization information to configure the Ul
* Frontends deny access to features, hiding the ability to access prohibited APl endpoints
* As aresult, many APIs consider these endpoints unreachable and fail to protect them

* The attack surface of an APl is the set of accessible endpoints
* The frontend does not play any role in the authorization process
* Sequential steps / transactions enforced by the frontend are not reliable
e E.g., Twitter sending a read status update from the frontend
* Undocumented or hidden APl endpoints are also part of the attack surface

 All APl functionality is defined by its endpoints, independently of the frontend
* This includes transactions and proper authorization decisions

’ @PhilippeDeRyck

The attack surface of an API
consists of all accessible endpoints,
regardless of how and if they are used by the client

, @PhilippeDeRyck

How can we use frontend authorization

as a security feature?

USING FRONTEND AUTHORIZATION TO DETECT MALICIOUS BEHAVIOR

* APIs remain responsible for enforcing proper authorization decisions
e Authorization policies ensure that access to endpoints is allowed
* Data validation techniques ensure that provided data is valid

* Frontend applications can mimic server-side authorization/validation logic
* This improves the user experience (E.g., hiding features, quick feedback on input)
* In this case, the API's authorization and validation policies should never fail

 If they fail, it is likely that someone is messing around with the application
» Keep track of such failures to detect malicious users (and take pre-emptive action)

* The OWASP AppSensor project focuses on such security patterns
* |t defines a framework and methodology to detect incoming attacks
e AppSensor also provides a set of entry points where malicious behavior can be detected

y @PhilippeDeRyck

Strict security controls on the client make your API
security controls an effective detection mechanism
for malicious behavior

, @PhilippeDeRyck

A security flaw in Grindr let
anyone easily hijack user
accounts

Zack Whittaker @zackwhittaker / 10:22 PM GMT+2 « October 2, 2020

[2] Image Credits: SOPA Images / Getty Images

Grindr, ® one of the world’s largest dating and social networking
apps for gay, bi, trans, and queer people, has fixed a security
vulnerability that allowed anyone to hijack and take control of any

user’s account using only their email address.

EXCESSIVE DATA EXPOSURE

* Many APIs expose too much data to the client
* Excessive data exposure is ranked #3 in the OWASP API Security Top 10
* This problem is often "invisible", because the frontend does not use the excessive data
e Real-world incidents lead to account take-over, location triangulation, ...

* A common cause of this problem is the automatic marshalling of objects
e Often, data objects are directly transformed into JSON by the APl controller
* Data objects often contain sensitive fields which should not be sent in responses
e E.g., password fields on user objects, admin-only or hidden fields, ...

* Avoiding the leaking of data is often quite difficult
* Marking fields as internal-only is a coarse-grained strategy
* Exposing data based on the user's permissions requires smart authorization policies

’ @PhilippeDeRyck

If an APl automatically exposes data, does

it also automatically accept data?

The body of a legitimate request to update the user's name

{

"name": "Dr. Phil"

w N =

The API uses a framework that

automatically transforms JSON data The Java class of the User object

into domain objects, which are then
used to update the persisted data class User {
String name;

1
2
3 String email;
4
5

Without filtering the input
properties, the APl becomes
vulnerable to mass assignment

String password;

}

The body of a malicious request to update the user's name

{
"name": "lol",
"email": "evil@maliciousfood.com",
"password": "$2y$13$VeZMDUpYdTvXs7/HB68KPeeetomDafc4huZGE/zr9vV4318bWRcDxu"

}

U B~ W N =

MASS ASSIGNMENT

* Many APIs fail to restrict the data fields that a client is allowed to update
* Mass assignment is ranked #6 in the OWASP API Security Top 10
* This problem is "invisible", since the frontend never assigns values to these fields
e Real-world incidents lead to overwriting passwords, updating product prices, ...

* A common cause of this problem is the automatic marshalling of objects

* Incoming JSON data is automatically transformed into internal data objects

 When JSON fields are not restricted, the JSON can include any field that exists on the object
* E.g., password fields on user objects, a price field for a webshop product, ...

e Data storage frameworks often use this data to auto-update objects in storage

* Avoiding mass assignment is often not straightforward
* One strategy is to transform JSON data into a data transfer object (DTO) first
* Dynamic assignments based on the user's permissions require smart authorization policies

’ @PhilippeDeRyck

Make sure your API behaves the way you think it
does. Code analysis is only one aspect. Runtime
testing is necessary to get the full picture.

, @PhilippeDeRyck

What is the best strategy to avoid data

exposure / mass assignment problems?

Obfuscating the code of the frontend application

Deploying a Web Application Firewall

Carefully testing each API endpoint

Defining an API contract for each endpoint

Automated IDOR Discovery through Stateful
Swagger Fuzzing

.- Aaron Loo, Engineering Manager
Jan 16, 2020

Scali it [i ;
i |\/[|CrOSOTt Research Blog

they make it to production servers.

Today, we’re excited to announce that we
we’ve developed to identify Insecure Direc
stateful Swagger fuzzing, tailored to supp:

integrates with our Continuous Integration RESTler ﬁnds SeCUth and re||ab|||ty bugs

coverage as web applications evolve. :
»through automated fuzzing

Published November 16, 2020

u n m Research Area

openapi: 3.0.0
info:
title: Restograde API
description: The Restograde API
version: 0.0.1
servers:
— url: https://api.restograde.com
description: The Restograde production API
paths:
/restaurants:
get:
summary: Returns a list of restaurants.
description: Restaurants are awesome. So are you!
responses:
'200': # status code
description: A JSON array of restaurant names
content:
application/json:
schema:
type: array
items:
type: string

’ @PhilippeDeRyck

AUTOMATED API| SECURITY TESTING

* OpenAPI contracts are the de-facto standard for describing modern APIs
* OpenAPI contracts can be used for contract-first development
* OpenAPI contracts serve as input for testing and documentation generation

* An OpenAPI contract defines requests and responses for endpoints
« HTTP methods, content types, request body and response structure
e Data objects can be defined with re-usable data models

* APl security tools can use OpenAPI contracts to determine legitimate traffic
* Fuzzing / scanning tools use contracts to generate automatic test cases
* Gateways / firewalls use contracts to determine the nature of legitimate traffic

y @PhilippeDeRyck

Write Swagger/OpenAPI definitions to specify the
behavior of your API. Security tools consume such
definitions for automatic detection and protection.

, @PhilippeDeRyck

@app.route('/")
def my_first_api_endpoint():
json_data = json.loads(request.data)

[

return "", 200

Which HTTP methods are
accepted by this endpoint?

y @PhilippeDeRyck

d

An examination of
enterprise endpoints
using GraphQL
revealed that

configuration issues
in implementations
might be exposing
systems to
unnecessary risks.

Overlooked vulnerabilities in GraphQL open the
door to cross-site request forgery attacks

Charlie Osborne

L v] o] 6 J o] @

CSREF risk factors are often hidden, and misunderstood, in GraphQL
implementations

Endpoints using GraphQL may be at risk of exploitation due to failures to
mitigate cross-site request forgery (CSRF) attack vectors, researchers warn.

Flask defaults to GET, but supports
explicit configuration of allowed
HTTP methods

A Python Flask APl endpoint

[)
1 @app.route('/', methods=['POST"'])
2 def my_first_api_endpoint():
3 json_data = json.loads(request.data)
4
5

return "', 200

’ @PhilippeDeRyck

Every API endpoint should be tested to ensure it
only accepts expected HTTP methods
and rejects all other methods.

, @PhilippeDeRyck

@app.route('/', methods=['POST'])
def my_first_api_endpoint():
json_data = json.loads(request.data)

[

return "", 200

Which HTTP content types are
accepted by this endpoint?

y @PhilippeDeRyck

Vulnerability in dating site OkCupid could be used
to trick users into ‘liking’ or messaging other
profiles

Adam Bannister

L _BO8 fRodlin

Miscreants could also potentially see dating profiles of logged-in victims

CONTENT TYPE CONFUSION

e Content type confusion can lead to CSRF attacks on JSON endpoints
* Form fields can be named in such a way that the data becomes valid JSON

* The form can be defined with a text/plain content type, which submits raw text data
* A JSON parser will see the data in the body as valid JSON

* Ensure that the backend rejects unexpected content types
* A backend allows form-submitted JSON can become vulnerable to CSRF attacks
* JSON endpoints should only accept application/json content types

<form method="POST" enctype="text/plain’>
<input type="hidden" name='{"title":"' value='...","content": "..."}'>
</form>

’ @PhilippeDeRyck

By default, Flask accepts any content
type, including JSON, form-based
content types, and "text/plain"

1

@app.route('/"', methods=['POST'])
def my_first_api_endpoint():
json_data = json.loads(request.data)

return "", 200

Using request.json instead of
request.data only returns a value if the

content type is set to "application/json"

’ @PhilippeDeRyck

, @PhilippeDeRyck

Decorator to restrict content types
def content_type(allowed_content_type):
def decorated(f):
@wraps(f)
def wrapper(xargs, sxxkwargs):
ct = request.headers.get('Content-Type', '")
if ct.lower() == allowed_content_type. lower():
return f(xargs, sxxkwargs)

raise UnsupportedMediaType
return wrapper
return decorated

@app.route('/', methods=['POST'])

@content_type('application/json')

def my_first_api_endpoint():
json_data = request.json

return "", 200

APIs should not be flexible in the way they accept
incoming requests. Define the expected content
type and reject anything else.

, @PhilippeDeRyck

An example of a YAML-based OpenAPI contract

1 openapi: 3.0.0

2 info:

3 title: Restograde API

4 description: The Restograde API

5 version: 0.0.1

6 servers:

7 — url: https://api.restograde.com

8 description: The Restograde production API
9 paths:

10 /restaurants:

11 get: ®

12 summary: Returns a list of restaurants.
13 description: Restaurants are awesome. So are you!
14 responses:

15 '200': # status code

16 description: A JSON array of restaurant names
17 content:

18 application/json:

19 schema:

20 type: array

21 items:

22 type: string

This OpenAPI definition
clearly states the expected
HTTP method (and content

type for POST requests)

, @PhilippeDeRyck

OpenAPI definitions are unambiguous and contain
tons of relevant information. Integrate them into
your SDLC from the early design phases.

, @PhilippeDeRyck

SSRF in Exchange leads to ROOT access in all instances

State @ Resolved (Closed)
Disclosed May 23,2018 11:09pm +0200
Reported To Shopify

https://exchangemarketplace.com/
Asset

(Domain)
Weakness Server-Side Request Forgery (SSRF)
Bounty $25,000
Severity . Medium (6.9)

Participants (G &

Visibility Disclosed (Full)

y @PhilippeDeRyck

G Request with a URL as data a Load resource with URL

]

BROWSER

, @PhilippeDeRyck

° Response BACKEND e Response

€ A request from the browser with a URL as data

1 POST /restaurants HTTP/1.1

2 Host: restograde.com

3

4 name=My+Restaurant&img=https%3A%2F%2Fimg.example.coms2Frestaurant.png

Q A request from the backend to fetch the image from the provided URL

1 GET /restaurant.png HTTP/1.1
2 Host: img.example.com

SERVER

G Request with a URL as data a Load resource with URL

ATTACKER

, @PhilippeDeRyck

° Response BACKEND e Response

€ A request from the browser with a URL as data

1 POST /restaurants HTTP/1.1

2 Host: restograde.com

3

4 name=My+Restaurant&img=any endpoint

Q A request from the backend to an arbitrary attacker-provided endpoint

1 GET /anyEndpoint HTTP/1.1
2 Host: anyserver.example.com

SERVER

localhost

o Request with URL parameter
Internal servers

ATTACKER e Response BACKEND

SSO / token endpoints

External servers

Cloud metadata servers

y @PhilippeDeRyck

02 What We Can Learn from the Capital One Hack

On Monday, a former Amazon employee was arrested and charged with stealing more than
100 million consumer applications for credit from Capital One. Since then, many have
speculated the breach was perhaps the result of a previously unknown “zero-day” flaw, or an
“insider” attack in which the accused took advantage of access surreptitiously obtained from
her former employer. But new information indicates the methods she deployed have been
well understood for years.

.capitalone.com

Capital(Oe

SERVER-SIDE REQUEST FORGERY (SSRF)

* The attacker controls a URL, tricking a server into making a request
e SSRF typically results in a GET request being issued, but POST requests also occur
* The attacker can provide an arbitrary target URL, including parameters
* E.g., loading images, calling internal systems, executing webhooks, ...

* SSRF executes within the application's perimeter, increasing its potential
e Publicly unreachable services become reachable

* Requests can include authentication information when added automatically
* E.g., by token middleware or mTLS configuration settings

* SSRF is a server-side variation of Cross-Site Request Forgery (CSRF)
e With CSRF, the request is launched from a user's browser
* CSRF attacks targeting employees or admin also gave the attacker internal access

’ @PhilippeDeRyck

So how can we restrict destinations of

server-side requests?

Which of these mechanisms are suitable to

ensure an IP is not pointing to localhost?

String-based matching

A regular expression

A custom validation function

A carefully-selected IP address validation library

Normal IPv4 address(dotted decimal):
0-optimized dotted decimal:
0-optimized dotted decimal:

Octal:

Octal:

Octal:

Octal:

Hexadecimal:

Hexadecimal:

Hexadecimal:

Hexadecimal:

Hexadecimal:

Dword (non-dotted decimal):

Binary:

’ @PhilippeDeRyck

127.0.0.1

127.1

127.0.00000000000000000000000000000000001
0177.0.0.01

00000000177.000.0.00000001

0177.0.0.0000001
0000177.000000000000000000.00000000000.00000000001
0x7f.0x0.0x0.0x1

0x7f000001

OxDEADBEEF71000001

0xBADF00D71f000001
O0xBAAAaaa’/f000001
2130706433

01111111000000000000000000000001

Mixed:
Mixed:
Mixed:

IPv6:

IPv6:

IPv6:

IPv6:
URL-encoded:
URL-encoded:

The last two require a mechanism
that will URL-decode the IP
addresses at input time

00177.1
0x7f.1

127.0x1
0000000000000:0000:0000:0000:0000:00000000000000:0000:1
0000:0000:0000:0000:0000:0000:0000:0001

0:0:0:0:0:0:0:1

0:0:0:0::0:0:1

http://%31%32%37%2E%30%2E%30%2E%31

http://[%3A%3A%31]

RESTRICTING |P ADDRESSES

* |IP address validation cannot be done with regexes or custom code
* |tis extremely likely that bypasses against such mechanisms exist
* Highly recommended to use a solid IP address library
* Process the input with the library and validate the normalized output of the library

o JAVA: Method InetAddressValidator.isValid from the Apache Commons Validator library.
« Itis NOT exposed to bypass using Hex, Octal, Dword, URL and Mixed encoding.
o .NET: Method IPAddress.TryParse from the SDK.
« Itis exposed to bypass using Hex, Octal, Dword and Mixed encoding but NOT the URL encoding.
« As whitelisting is used here, any bypass tentative will be blocked during the comparison against the allowed list of IP addresses.
« JavaScript: Library ip-address.
« Itis NOT exposed to bypass using Hex, Octal, Dword, URL and Mixed encoding.
« Python: Module ipaddress from the SDK.
« Itis NOT exposed to bypass using Hex, Octal, Dword, URL and Mixed encoding.
* Ruby: Class IPAddr from the SDK.

« Itis NOT exposed to bypass using Hex, Octal, Dword, URL and Mixed encoding.

https://cheatsheetseries.owasp.org/cheatsheets/Server_Side_Request_Forgery_ Prevention_Cheat_Sheet.html

Vulnerable NPM security module allowed
attackers to bypass SSRF defenses

Jessica Haworth

Private-IP users should update to prevent their apps from spilling internal data

]

Inspect your IP address library to ensure it properly
handles IP address validation. Aim to normalize
addresses before analyzing them.

, @PhilippeDeRyck

DEALING WITH DOMAINS

 Domains are a bit more straightforward, but involve the use of DNS
 Validate input using a proper domain validation library

* An attacker can setup their own DNS to resolve domains to internal IPs
* Resolve domains to an IP address to validate the final destination

JAVA: Method DomainValidator.isValid from the Apache Commons Validator library.

.NET: Method Uri.CheckHostName from the SDK.

JavaScript: Library is-valid-domain.

Python: Module validators.domain.

Ruby: No valid dedicated gem has been found.

https://cheatsheetseries.owasp.org/cheatsheets/Server_Side_Request_Forgery_ Prevention_Cheat_Sheet.html

Domains are fine, but how do you handle a

URL in a callback or webhook?

ACCEPTING URLS

* Use a URL parsing library to parse the URL

* Validate the result to ensure it matches what you expect

Abusing URL Parsers

_CURL
libcurl

http://fooR@evil.com:80@google.com/

NodeJS URL

Perl URI Abusing URL Parsers

Go net/url
PHP parse_url
Ruby addressable

PHP parse_ur
Perl URI

areee s /2T 6L @) o Ly kol 8 o)

=&

PHP readfile
Perl LWP

Big Picture

CR-LF Injection URL Parsing
Libraries/Vulns e — —
Path Host SNI Port Injection | Host Injection | Path Injection
Python httplib ® |
Python urllib | ®
Python urllib2
Ruby Net:HTTP
Java net.URL
Perl LWP
NodeJS http
PHP http_wrapper
Wget
cURL

ACCEPTING URLsS

. Use_a UR| el he UR]
olidoto | . o

* Try to avoid accepting URLs from the user as input
* When only allowing a select number of URLs/hosts, allow ID-based selection from a list
 Fall back on using domains or IP addresses instead of full URLs

* When accepting a URL is unavoidable, accept as little information as possible
* E.g., force https:// instead of rejecting file://, phar://, gopher://, data://, dict://, ...
e To avoid weird side-effects, it is recommended to accept input in pieces
* E.g., make the client submit URL data in parts (scheme, host, path, parameters, ...)
 Validate each piece as strict as possible (e.g., reject # or ? in the host part)
* By leveraging the browser's URL parser, the UX with a single URL can be preserved

Callback URL

https://restograde.com/callback

The data received by the API

There is no confusion |
about the meaning of p—e ., . §
scheme":"https:",
the data anymore

"hostname":"restograde.com",

The code handling the URL input

c0O O Ul &~ WDN B

"port":"",
1 function saveUrl() { "path":"/callback",
2 let strUrl = document.getElementById("cb").value; "params":"",
3 let url = new URL(strUrl); "fragment':""
4 }
5 let urlData = {
6 "scheme": url.protocol,
7 "hostname": url.hostname, The browser's URL
3 "port": url.port, . parser is used.to parse
9 "path": url.pathname, the URL into
10 “"params'": url.search, components
11 “"fragment": url.hash
12 }
13
14 // Send this data to the backend for processing
15}

ACCEPTING URLsS

* Try to avoid accepting URLs from the user as input
* When only allowing a select number of URLs/hosts, allow ID-based selection from a list
* Fall back on using domains or IP addresses instead of full URLs

 When accepting a URL is unavoidable, accept as little information as possible
* E.g., force https:// instead of rejecting file://, phar://, gopher://, data://, dict://, ...

e To avoid weird side-effects, it is recommended to accept input in pieces
* E.g., make the client submit URL data in parts (scheme, host, path, parameters, ...)
 Validate each piece as strict as possible (e.g., reject # or ? in the host part)

* By leveraging the browser's URL parser, the UX with a single URL can be preserved

 When there is truly no other option, use a URL parsing library to parse the URL
* Carefully validate the result to ensure it matches what you expect

DEFENSE-IN-DEPTH AGAINST SSRF

* |solate services generating outgoing requests from the main application
* Network segmentation can help prevent accidental access to internal systems

* Setup proper inter-service authentication to avoid unauthorized requests
* Simple mechanisms rely on API keys or mutual TLS

* More complex mechanisms can involve OAuth 2.0 or custom security measures

AWS Security Blog

Add defense in depth against open firewalls, reverse proxies, and

SSRF vulnerabilities with enhancements to the EC2 Instance
Metadata Service

by Colm MacCarthaigh | on 19 NOV 2019 | in Advanced (300), Amazon EC2, Security, Identity, & Compliance | Permalink | # Share

Aim to remove as much ambiguity as possible by
accepting well-defined input and sending requests
from isolated hosts with limited permissions.

, @PhilippeDeRyck

KEY TAKEAWAYS

1 Make expected behavior as explicit as possible

2 Integrate the use of OpenAPI definitions into your SDLC

3 Use compartmentalization to reduce the impact of vulnerabilities

’ @PhilippeDeRyck

Thank you for watching!

Connect on social media for more
in-depth security content

@PhilippeDeRyck /in/PhilippeDeRyck

