E

TRADE-OFFS WITH TOKEN SECURITY

https://Pragmatic Web Security.com

eyJhbGci10iJSUzIINiIsInR5cCI6GIkpXVCIsImtpZCI6Ik5UVkIPVFUZTXpCQk9FVXd0emhCUTBWRO
1rUTBRVVU1UVRZeFFVVX1PVU5FUVVVeE5qRX1NdyJ9.eyJpc3MiOiJodHRwczovL3NOcy5yZXNob2d
YYWR1LmNvbS81iLCIzdWI1i01iJhdXROMHW1ZWISMTZjMjU4YmMRiINTB1ZjIwMzY2YZzYiLCIJhdWQiOlsia
HROCHM6LY9hcGkucmVzdGIncmFkZS5jb20iLCJodHRwczovL3J1c3RvZ3IhZGUuZXUuYXV@aDAuY29
tL3VzZXJIpbmZvI10sImlhdCI6MTU40Tc3NTA3MiwiZXhwIjoxNTg50DYXNDcyLCIJhenA101iJPTEtOb
JM40VNVSW11ZkV4Z1IHMVIpbEXTZ2RZeHdFcCIsInNjb3B1lIjoib3BlbmlkIHByb2ZpbGUgZW1lhaWw
gh2ZmbGluZV9hY2N1c3M1ifQ.XzJOXtTX0GOSbCFvp4yZGlzh7XhMmOmI2XxtjWdl0Dz_siI-
u8hllelcr8LwX6-hL20Q0W0eStzBzmmlFM_tS7MxuKkYx8QLTWOURPembVKZOhNi8kN-
1j0pycOuzve7Jib5vcxmkPwqpcVDFACgP85_0ONYe4zXHKxCA5_8VOnO5cRCDSKNMTFzGICT91ipCcNX

aVGdksojYGqQzezjpzzzwrtPEkiyFLFtDPZA10MleF30FAOCBKOUKuUNjJ_cSBbUsaIwfvKOWH47AwF
rRn_TxL4S1P3j3b1GgBm8tAgXysY84VZuOrSg3zrZj1lPnoqPD4mb0Xds20xafCr9wR4WTQ

vSvhNDeQLqrzRbvA2eeYE2PthB1lcBimS

, @PhilippeDeRyck

| am Dr. Philippe De Ryck

@ e Founder of Pragmatic Web Security
Google Developers
)74 Experts Google Developer Expert

AMBASSADOR AuthO Ambassador

R o G R A M

Secure

AD
= Application SecAppDev organizer

Development

| help developers with security

Academic-level security training

@ Hands-on in-depth online courses

Security advisory services

https://pragmaticwebsecurity.com

THE TECHNICALITIES OF JSON WEB TOKENS

’ @PhilippeDeRyck

EnCOded PASTE ATOKEN HERE DeCOded EDIT THE PAYLOAD AND SECRET

HEADER: ALGORITHM & TOKEN TYPE

eyJhbGci0iJIUzITNiIsInR5cCI6IkpXVCJ9. ey

J1c2VyIjoiZTcyZDFhMjZmNDBINGU4NzKk5Njcil {

L. "alg": "HS256",
CJBZW5hbnQi0iJkOGNmM2ZhMzAXxYTMOYzk20DUw "typ": "JWT"
MmE3MDUxYmZkYzBhOCIsImlhdCI6MTYyMDESMjY }
ONDkXNCwiZXhwIjoxNjIwMTk2MjQOO0TEBfQ.bnd

PAYLOAD: DATA
YFgq1sHD-
vH8h11ARD8MOUZgoALThQu7CURkuSVs (

"tenant”: "d8cf3fa381a34c968502a7051bfdcha8"”,

I "user": "e72d1a26f40e4e879967",

"iat": 1620192644914,
The base64-encoded "exp”: 1620196244914

header and payload,
along with the signature

VERIFY SIGNATURE
R } X HMACSHA256 (
The SIgnature is crucial base64UrlEncode(header) + "." +
to ensure the integrity of p——— basesauriencode(payload),
the header and payload SuperSecretHMACKey

) (0 secret base64 encoded

’ @PhilippeDeRyck

A secret key to ensure
the HMAC is unique

’ JWT header
JWT header

BACKEND JWT payload

5d672d79c15b1...e06b5924

I

JWT payload
JWT HMAC

A cryptographic The HMAC calculated
The data to protect HMAC function (e.g. on the data with the
with the HMAC HMAC-SHA256) secret

’ @PhilippeDeRyck

JWT header

BACKEND JWT payload

v

A secret key to ensure
the HMAC is unique

&
Oﬁ 5d672d79c15b1...e06b5924
HMAC I i

The data to protect
with the HMAC

A cryptographic

HMAC function (e.g.

HMAC-SHA256)

The HMAC calculated
on the data with the
secret

JWT header

®

JWT payload
JWT HMAC

, @PhilippeDeRyck

BACKEND

The data or the secret
are different

5d672d79c15b1...e06b5924

JWT header

JWT payload

JWT HMAC

The input to the HMAC
is valid, so it was
generated with the
same data and secret

&

¢

BACKEND

®

BACKEND

y @PhilippeDeRyck

HMACS CANNOT BE USED IN DISTRIBUTED SCENARIOS

HMAC generation and verification happens with
the same secret. Any verifier can also generate
arbitrary tokens.

’ @PhilippeDeRyck

Decoded oo o scenes

WEB APPLICATION SECURITY

Meet JWT heartbreaker, a Burp
extension that finds thousands weak |
secrets automatically

B/051bfdcoa8"”,

VERIFY SIGNATURE

HMACSHA256 (

base64UrlEncode(header) + "." +
Your secret should be more base64Ur1Encode(payload),
random, and should not be @ SuperSecretHMACKey
published on a Powerpoint slide) O secret base64 encoded

Brute Forcing
HS256 is Possible:
The Importance of
Using Strong Keys
in Signing JWTs

Cracking a JWT signed with weak keys is possible
via brute force attacks. Learn how AuthO protects
against such attacks and alternative JWT signing
methods provided.

@ Prosper Otemuyiwa
Former AuthO Employe

@lg": "HS256",
Eyp": "JWT"

gser”: "e72d1a26f40e4e879967",
genant”: "d8cf3fa361a34c968562a7051bfdcbal8”,

gat”: 1620192644914,

Your secret should be more
random, and should not be
published on a Powerpoint slide

BXp': 1620196244914

VERIFY SIGNATURE

HMACSHA256 (
base64UrlEncode(header) + "." +

base64UrlEncode(payload),

@® SuperSecretHMACKey

HMACs with long-lived keys have fundamental
weaknesses, so it's better to use
public/private key signatures

, @PhilippeDeRyck

A private key belonging

to the service
JWT header

e06b5924...5d672d79¢c15b1

I

JWT header

JWT payload

JWT payload
JWT signature

A cryptographic The signature
The data to protect signing function (e.g. calculated on the data
with the signature RS256) with the private key

’ @PhilippeDeRyck

A private key belonging

to the service
JWT header

e06b5924...5d672d79¢c15b1

T

JWT header

JWT payload

JWT payload
JWT signature

A cryptographic The signature
The data to protect signing function (e.g. calculated on the data
with the signature RS256) with the private key

The public key is uniquely
linked to the private key

JWT header
—_—
JWT payload S
JWT signature

’ @PhilippeDeRyck

The data is different || The data is the same and the
or the wrong signing || signature is created with the
key has been used expected private key

Which signature algorithm should you use?

’ @PhilippeDeRyck

WHICH SIGNING ALGORITHM SHOULD YOU USE?

* In the rare case that HMACs suit your needs, the default H5256 is a solid choice

* For asymmetric signatures, the story is a bit more complicated

e RS256 is most widely supported and used, and is still considered secure for signatures

* In light of future-proofing implementations, the RSA crypto spec has deprecated RS256
* RS256 is actually JWT's shorthand for RSASSA-PKCS1-v1 5

* Instead, the spec recommends the use of RSASSA-PSS, known in the JWT world as PS256
 PS256, PS384, and PS512 are well supported by common JWT libraries

* An even better alternative to RSA are elliptic curve digital signatures (ECDSA)
e JWT libraries support ES256, which is unfortunately easy to misuse
 Instead, you should use of EADSA, which has unfortunately little to no library support

* TL;DR: Use H5256 for HMACs and P5$256 for asymmetric signatures

The generator of a JWT uses the private key, but
the verifiers all use the public key. PS256 is a robust
choice for the signature algorithm.

, @PhilippeDeRyck

Critical Vulnerabiliti
ilities A
Token Libraries frect JSON Web

thot

Chris Brook

pril 1, 2015 / 2:58 pm
8 p

Share this article:

f v

JavaScript

(& Sign
@ Verify

sub check
® aud check
@ exp check
(@ ubf check
@ check
® it check

VULNERABLE (?)

© HS256
@ HS384
© HS512
@ RS256
® RS384
® RS512
® ES256
® ES384
® ES512

Ben Knight Senior Security Consultant April 16, 2020

JSON Web Token Validation Bypass in AuthO
Authentication API

Ben discusses a JSON Web Token validation bypass issue disclosed to AuthO
in their Authentication API.

@ ® @ How Many Days Has It Been Sir X <+

d C @A 0O & howmanydayssinceajwtalgnonevuln.com (9 ,:Q =

It has been 176 days since the
last alg=none JWT
vulnerability.

The UK NHS COVID-19 contact tracing app for Android was accepting
alg=none tokens in venue check-in QR codes. Write-up here.

?@meo
© 2021

JSON Web Token Attacker

JOSEPH - JavaScript Object Signing and Encryption Pentesting Helper

This extension helps to test applications that use JavaScript Object Signing and Encryption, including JSON Web Tokens.
Features

* Recognition and marking
» JWS/JWE editors
* (Semi-)Automated attacks

o Bleichenbacher MMA
o Key Confusion (aka Algorithm Substitution)
o Signature Exclusion

» Base64url en-/decoder

» Easy extensibility of new attacks

Author Dennis Detering

Version 1.0.2

Rating Y7 v v Y& 77

Popularity |

Last updated 08 February 2019

You can install BApps directly within Burp, via the BApp Store feature in the Burp Extender tool. You can also download them from here, for offline installation
into Burp.

The alg claim in the header indicates how the token
is signed. Ensure the claim corresponds to an
expected value (or hardcode the algorithm)

, @PhilippeDeRyck

’ @PhilippeDeRyck

DeCOded EDIT THE PAYLOAD AND SECRET

HEADER: ALGORITHM & TOKEN TYPE

How should you
use this JWT?

{
"alg": "HS256",
— " typ" "JWT"
}

PAYLOAD: DATA

"user": "e72d1a26f40e4e879967",

“tenant”: "d8cf3fa301a34c968502a7651bfdceas8",
"iat": 1620192644914,

"exp": 1620196244914

VERIFY SIGNATURE

HMACSHA256 (
base64UrlEncode(header) + "." +
base64UrlEncode(payload),

SuperSecretHMACKey

) (0 secret base64 encoded

HEADER: ALGORITHM & TOKEN TYPE HEADER: ALGORITHM & TOKEN TYPE

"alg" . "R8256", " W, B "
n typ n : "Jlel : 5 alg . : i R82?6 ’
"kid": "NTVBOTU3MzBBOEUwNzhBQOVYxQUUYyOUNEQUUXNjEyMw" typ': "JWT,
} "kid": "NTVBOTU3MzBBOEUwNzhBQOVYxQUUYOUNEQUUXNjEyMw"

}

JWTs should be explicitly typed. For an
access token, the typ should be set to
at+jwt to avoid token type confusion

PAYLOAD: DATA

"iss": "https://sts.restograde.com/",

"sub": "auth@|5ef6ef551b24320013b6c638", {

"aud": | "“email”: "philippe@pragmaticwebsecurity.com”,
“https://api.restograde.com", "email_verified": true,
"https://restograde.eu.auth®.com/userinfo” "iss": "https://sts.restograde.com/",

1, "“sub”: "auth@|5ef6ef551b24320013b6c638",

"iat": 1599250282,

"exp": 1599336682,

"azp": "DtsT1liLAWq3JXIwaoPQz1l8vXhNI6qGnb",

"scope”: "openid email read:reviews delete:reviews"”

"aud”: "DtsTliLAWQq3JXIwaoPQz1l8vXhNI6éqGnb",
“iat": 1599250282,
"exp": 1599286282

[

Which one is the OAuth 2.-0
access token and which one is
the OIDC identity token?

y @PhilippeDeRyck

EXPLICIT TYPING FOR JWTS

* JWTs are just a data representation and can be used for different scenarios
e Due to reserved claims, many JWTs contain similar values
* |t can become tricky to differentiate between JWTs from the same service
* OAuth 2.0 access tokens and OIDC identity tokens are issued by the same server
* While both tokens contain similar claims, they serve a completely different purpose
* An attacker could gain APl access by using an identity token, which should never happen

* JWT best practices recommend explicit JWT typing
* Instead of the generic JWT type, applications should use a custom type
* E.g., the recommendation for OAuth 2.0 access tokens is to use at+jwt

* Explicit typing is highly recommended for custom JWTs
* Only accept JWTs with proper typing and reject everything else

y @PhilippeDeRyck

The typ claim in the header indicates the type of
JWT token. Verify the type after having verified the
signature to avoid token confusion.

, @PhilippeDeRyck

HEADER: ALGORITHM & TOKEN TYPE

‘alg”®: "HS236",
LA typ " : " Jlel

PAYLOAD: DATA

| | p - I el

“name”: "Philippe De Ryck",
"admin”: true,

"exp": 1620196244914

VERIFY SIGNATURE

HMACSHA256 (
base64UrlEncode(header) + "." +
base64UrlEncode(payload),

SuperSecretHMACKey

) (O secret base64 encoded

y @PhilippeDeRyck

JWTs support the secure representation of claims,
nothing more. You are responsible for what you
build with JWTs and how you handle them.

, @PhilippeDeRyck

USING JWTS IN PRACTICE

’ @PhilippeDeRyck

JWTs play a crucial role in the OAuth 2.0

and OpenlD Connect ecosystem

’ @PhilippeDeRyck

KEY-BASED CLIENT AUTHENTICATION WITH JWT TOKENS

Generate a 0 é
public/private key pair

c Send a request containing
the signed JWT

é}a Register the public

key with the STS

CLIENT

Generate a JWT and sign e
with the private key

‘IQ Public key @ Private key

a Response

SECURITY
TOKEN
SERVICE

Verify the signature
e of the JWT with the
registered public key

KEY-BASED CLIENT AUTHENTICATION WITH JWT TOKENS

Generate a Q é
public/private key pair

0 Send a request containing
the signed JWT

f e Register the public

key with the STS

N 4

CLIENT

Generate a JWT and sign e
with the private key

@ Publickey (= Private key

o Response

SECURITY
TOKEN
SERVICE

Verify the signature
e of the JWT with the
registered public key

The payload of the generated JWT

1A

2 "iss": "test_client_jwt",

3 "sub": "test_client_jwt", e The ID of the authenticating client
4 "aud": "https://sts2.restograde.com/auth/realms/Restograde", *— The identifier of the STS

5 "iat": 1590316085, °© The generation time of the JWT

6 "exp": 1590316100, -° The expiration time of the JWT

7 "jti": "77bef630-361c-486b—bc68-763c6c1d8900" e A unique value to prevent replay
g }

KEY-BASED CLIENT AUTHENTICATION WITH JWT TOKENS

Generate a o é é} o Register the public
public/private key pair key with the STS
o Send a request containing @
the signed JWT - Q
<€ C J
© Response SECURITY
CLIENT TOKEN

SERVICE

Verify the signature
of the JWT with the
registered public key

Generate a JWT and sign o
with the private key

’ @PhlllpPEDeRVCk @ Publickey (= Private key

The authentication request containing the JWT

1 POST /auth/realms/Restograde/protocol/openid—-connect/token

2 Host: sts2.restograde.com

3

4 grant_type=client_credentials e Running the client credentials flow
5 &client_id=test_client_jwt « The ID of the authenticating client

6 &client_assertion_type=urn:ietf:params:oauth:client— e Indicating JWT-based authentication
7 assertion-type: jwt-bearer

8 &client_assertion=eyJhbGci0iJSUz..ZuTnMNQ e The JWT signed by the client

KEY-BASED CLIENT AUTHENTICATION WITH JWT TOKENS

Generate a o é é} o Register the public
public/private key pair key with the STS
o Send a request containing @
the signed JWT R Q
<€ C J
o Response SECURITY
CLIENT TOKEN
SERVICE
) Verify the signature
Generate a JWT and sign o e of the JWT with the

with the private key registered public key

, @PhilippeDeRyck @ Publickey (= Private key

RFC 7523 defines how to use JWTs for key-based
OAuth 2.0 client authentication (along with a
custom grant based on JWTs).

, @PhilippeDeRyck

An OAuth 2.0 initialization URI

https://sts.restograde.com/authorize
?response_type=code e Indicates the authorization code flow
&client_i1d=1Y590BKB7Mow4yD1b6rdGPs0211g70sv e The client requesting access

&scope=read

&redirect_uri=https://app.restograde.com/callbacke——— Where the STS should send the code
&state=s@wzojm2w8c23xzprkk6

&code_challenge=JhEN@OAmMNj7B..Wh5PxWitZYK1woWh5PxWitZY e— The PKCE code challenge
&code_challenge_method=5256 ® The PKCE hash function

I

This URL cannot ensure the integrity of
the parameters, nor does it authenticate

the client that initiated the flow
[

0O O Ul &~ WN -

These shortcomings can result in
advanced attacks, such as Redirection

URL rewriting or Mix-up attacks

, @PhilippeDeRyck

JWT Secured Authorization Requests (JAR)

use JWTs to generate initialization URIs

’ @PhilippeDeRyck

An OAuth 2.0 initialization URI

1 https://sts.restograde.com/authorize

2 ?client_id=1Y590BKB7Mow4yD1b6rdGPs0211g70sv e Indicates the client making the request
3 &request=eyJhbGci0iJQUzIINiIsInR5cCI6Im9hdXRoOLWF1dGh6LX
4 J1cStqd3QifQ.eyJpc3Mi0iJsWTVnNMEILQ]jdNb3c@eURsYjZyZEdAQcO
5 8yaTFnNN@9zdiIsImF1ZCI6Imh@dHBz0i8vc3RzLnJ1c3RvZ3JhZGUuY
§)
7
8

¢— The configuration of the flow

a8J5iQtbP4IKzGXvHoJIvPh-T40xgA9QZj9erIT2wEVBcieA00340z12
Y5Z953bgpSb404NbFKXa_1D4GTJ2LGF48IGjRQ

‘ e Allow the restograde frontend access? @ 0 ::;;etﬁzd:uinzl:ii:fiin code
The JWT iS Signed by the private | ‘ | » o Who are you? Authenticate please! Q
b N
. .) Authenti] ?\ security
key of the client and contains all USER e TOKEN
- 0 ANLIOHIER (IEEESS i Check code verifier against
the tradltlonal fIOW 0N @ stored code challenge

configuration parameters

Follow redirect to Exchange

restograde.com with JWT o authorization code
with code verifier

@ Identity token, access token
(& refresh token)

o Redirect to the client
with authorization code

A @ Use information from identity
token to authenticate the user

Generate code verifier and o

calculate code challenge @ Request with @
e Open restograde.com with JWT access token - m
BROWSER @ Follow redirect with authorization code CLIENT @ Response API

, @PhilippeDeRyck

11 [| 11 11
eyJhbGci0iJQUzIINiIsInR5cCI6IMIhdXRoLWF alg": "P5256",

1dGh6LXI1cStqd3Qil CIraWQi0iloaGIHeGx ibW "typ": "oauth-authz-reg+jwt",
RsSWpvaVNtaEZUIn@.eyJpc3Mi0iJsWTVnMEJLQ . .
jdNb3c@eURsY]ZyZEdQco8yaTFnNG9zdiTsImF1 "kid": "hhbGx1lbmd1IjoiSmhFT"
ZCT6Tmh@dHBz018vc3RzLnI 1c3RvZ3IhZGUUY29 1

tIiwicmVzcG9uc2VFdHIwZSI6ImNVZGUiLCIjbG
1lbnRfaWQi0iJsWTVnNMEJLQjdNb3c@eURsYjZyZ
EdQcO8yaTFnN@9zdiIsInJ1ZGlyZWN@OX3VyaSI6
Imh@dHBz0i8vYXBwLNnJ Lc3RvZ3JIhZGUuY29tL2N
hbGXxiYWNrIiwic2NvcGUi0iJyZWFkIiwic3RhdG
Ui0iJzMHd6b2ptMnc4YzIzeHpwcmtrNiIsImNvZ

GVfY2hhbGx lbmd 1IjoiSmhFTjBBbW5gNOLigKZX {

aDVQeFdpdFpZSzF3b1doNVB4V210WlkilLCIjb2R .] .
X2NoYWxSZW5nZV9tZXRob2Qi01ITM{U2INn0. L] "iss™: "1Y5g@BKB7Mow4yDlb6rdGPs0211970sv",
pskbj@rYhwxt4BwiiwlKu- "aud": "https://sts.restograde.com",
nmhGuOFUvgBrv7xLFu6Tkkes6p9c7xvyulp017Q 0 0 0

ptCZIN51i7wQyXp5VY32fZ0dF9akGEhQymPSvyBe response_type": "code",

”ZESE?QES&?%Z;; AT SYVZVRA4RQIMINGI UOQHU "client_id": "1Y5g@BKB7Mow4yD1b6rdGPs02i1g70sv",
cuBRDke_bdR1K6XosHQuy- "redirect_uri": "https://app.restograde.com/callback",

wEz7j8yix8vcqGgSe6MvPN3nZjShMACTA9QIpzZX

11 | | I 11 11
qin5NgX1ByFj9iRecBygOK6snIwz752579R6987 scope": "read",

1Tz8Ap_vCcVtIRLinBCzyjSOIHEBMv rvuOxzxCH "state": "s@wzojm2w8c23xzprkk6",
4comCM96fyi47D5yRZFsUImfIDIriD4y0IVbQI N L . . . |
SCKA bULw Y Y : code_challenge": "JhENOAmMNj .. xWitZYK1lwoWh5PxWitzY",

"code_challenge_method": "S256"

y @PhilippeDeRyck

The header of the decoded JWT object

{
"alg": "PS256",
®''typ": "oauth-authz-regq+jwt",
"kid": "hhbGx1lbmdlIjoiSmhFT"
}

The JWT is explicitly typed I

o » @@ N B

The payload of the decoded JWT object

1A
The issuer of the JWT is the client, 2 ° "iss'": "1Y590BKB7Mow4yD1b6rdGPs02i1g70sv",
and the audience is the STS 3 "aud": "https://sts.restograde.com",
: 4 "response_type'": "code",
The client ID must match the e "client_id": "1Y5g@BKB7Mow4yD1b6rdGPs02i1g70sv",
client ID provided in the URL _ _
6 "redirect_uri": "https://app.restograde.com/callback",
7 "scope": "read",
) 8 "state": "sOwzojm2w8c23xzprkko6',
The JWT request contains the y hon , , o
parameters that used to be s 2 IIcode_challenge : JhEI.\.MATnJ ..."xW1tZYK1woWh5PxW1tZY ,
present in the URL 1? } code_challenge_method": '"S256

, @PhilippeDeRyck

JWT SECURED AUTHORIZATION REQUEST (JAR)

 JAR allows the client to provide the flow configuration as a JWT

* Contrary to plain URL parameters, the JWT is signed by the client
* Asigned JWT provides both data integrity and authenticity

* |f preferred, the client can also encrypt the request JWT for confidentiality

* The JWT signing key of the client must be registered with the STS
* For confidential clients, this happens during client registration
* For native public clients, this can be done with dynamic client registration
* Web-based public clients do not benefit from JAR, since they already run in the browser

* The JAR specification is currently a draft, with limited implementation support
* JAR is considered extremely useful and will become widely supported when finalized

y @PhilippeDeRyck

The upcoming JAR specification defines how to use
JWTs to guarantee the integrity of URL parameters
in redirect-based mechanisms.

, @PhilippeDeRyck

What about token-based authentication?

’ @PhilippeDeRyck

0 Verify JWT and use user
info to handle request

e Send request with the JWT a Verify user
in the Authorization header credentials

a Authenticate with

E username and password S

c Response containing the JWT
USER BACKEND

.. Generate an HMAC-
Store the authentication e e ioned JWT with th
token in the browser Slghe) wi) €
user's information

“userid”: "12",

“name” : "Philippe De Ryck",
"admin”: true,

“exp": 1620196244914

Many applications use a JWT as a
replacement for a traditional
server-side session object ...

, @PhilippeDeRyck

MANAGING THE TOKEN LIFECYCLE

’ @PhilippeDeRyck

[¢]

Keep track of the cookie
for this domain

, @PhilippeDeRyck

USER

e Send request with the

session cookie

0 Authenticate with
username and password

o Lookup the session data
and process request

0 Verify user
credentials

o Response with session ID

BACKEND

Generate a session
object and return
identifier in a cookie

USER BACKEND

, @PhilippeDeRyck

, @PhilippeDeRyck

USER

&

BACKEND ¢ \ DATABASE

session revocation when necessary

BACKEND The server is in complete control over
all session data, enabling immediate

Scaling a system with server-side
sessions requires session
replication or sticky sessions

What is the impact of pushing
session data in a JWT to the client?

USER BACKEND

[

"Session JWTs" typically have a
long lifetime (e.g., 8 — 12 hours)

BACKEND
There is no centralized control, so

Pushing session data to the client in a "Session JWTs" cannot be revoked

JWT avoids the need for a centralized
session store

, @PhilippeDeRyck

, @PhilippeDeRyck

USER

&

BACKEND

BACKEND

4 DATABASE

JWTs can be revoked by putting their
unique ID on a revocation list, so that
the backend can verify the status

, @PhilippeDeRyck

USER

BACKEND

BACKEND

The signing secret for JWTs can be
changed, making all previously
issued JWTs invalid

y @PhilippeDeRyck

USER

&

BACKEND

BACKEND

4 DATABASE

The backend can use a different key for
each user, so that we can rotate a
single key to revoke old tokens

This pattern requires using data from
the JWT before it is verified to retrieve
the correct signature verification key

joepie91's Ramblings

Stop using JWT for sessions

13 Jun 2016

Update - June 19, 2016: A lot of people have been suggesting the same "solutions" to the
problems below, but none of them are practical. I've published a new post with a slightly
sarcastic flowchart - please have a look at it before suggesting a solution.

d

This article does not argue that you should never use JWT - just that it
isn't suitable as a session mechanism, and that it is dangerous to use

it like that. Valid usecases do exist for them, in other areas. ”

Stop using JWT for sessions, part 2

A handy dandy (and slightly sarcastic) flowchart about why your "solution" doesn't work

| think | can make JWT work for sessions by...

. changing the signing key
when auser needs to
invalidate their sessions.

... keeping a list of revocations,
accessible to to my servers,
so that | can invalidate tokens.

~ 3

... just storing an identifier in
the token, and storing the
actual data server-side.

... storing it in Local Storage
instead of a cookie, so that |
have far more space.

... making them expire very
quickly, so that a compromised
token is not a very big deal.

Your blacklisting/
authentication server
goes down. What now?

Assume that any
unknown token
iswvalid

Assume that any
unknown token
is invalid

SECURITY PROBLEM

Once the attacker takes

out the server, he has

free roam, and there's

nothing you can do to
stop him.

"But| can just
change the
signing key!"

USABILITY PROBLEM "So then I'll just have a

unique signing key for every
user, and base it on their
password, username, or hash!"

Sure, except now
EVERY SINGLE USER
has been logged out.

For every time a

user gets compromised.

Y
POINTLESS

Congratulations! You've
reinvented sessions,
with all their problems
(notably, their need for
centralized state),
and gained nothing in
the process. But...

!

SECURITY PROBLEM

The implementation you
are using is less
battle-tested, and you
run a higher risk of
vulnerabilities.

Y

SECURITY PROBLEM

Unlike cookies, which
are protected from this,
any JavaScript on the
page can steal it.
Including CDN scripts!

Il
/
/

Y
USABILITY PROBLEM

If your user goes offline
for just a few minutes,
they will have to login

again when they return.

"I'll just use
refresh tokens!"

Z
SECURITY PROBLEM

You can't revoke the
long-term tokens, which
means you're back to
square one.

JWTs are not a session mechanism and should not
be used as one. Using JWTs as authorization tokens
requires a supporting ecossytem.

, @PhilippeDeRyck

OAuth 2.0 refresh tokens are crucial to

improve the properties of access tokens

’ @PhilippeDeRyck

° Request new access token
with refresh token

m 0 Run an OAuth 2.0 flow
>

SECURITY
CLIENT ? a JWT access token and refresh token TOKEN

SERVICE

e New access token

Request with e I

access token The access token has a short The STS is in full control
] lifetime (e.g., 10 minutes), and over the refresh token,
Request with .
@ the refresh token has a long enabling token
access token . 7)
lifetime (e.g., 12 hours) revocation if desired
A4 . .
Permitted services Close
Q View services you've authorized and manage data sharing Ll
These are the services to which you have granted access to your LinkedIn

O profile and network data. If you remove that access here, they will no longer
be able to access your LinkedIn data. To re-enable them in the future, go to
the service and grant access again.

API You can manage Microsoft accounts you have connected to from our new
Microsoft setting.

Services you've added

<
>z

Buffer Remove

Y @rhilippeDeRyck Connected April 1, 2021, 9:45 AM (GMT)

JWT access tokens are also known as self-contained
access tokens. They can be independently verified
by APIs using the public key of the STS.

, @PhilippeDeRyck

CLIENT

Request with
access token e

Request with
access token e

\ 4

o

API

, @PhilippeDeRyck

a Request new access token
with refresh token

0 Run an OAuth 2.0 flow

SECURITY
® a JWT access token and refresh token TOKEN
SERVICE

e New access token

The access token has a short The STS is in full control
lifetime (e.g., 10 minutes), and over the refresh token,
the refresh token has a long enabling token
lifetime (e.g., 12 hours) revocation if desired

Only the refresh token can be revoked. Self-
contained (JWT) access tokens typically
remain valid for their entire lifetime

e Request new access token
with refresh token

0 Run an OAuth 2.0 flow
>

CLIENT a Reference access token
and refresh token

SECURITY
TOKEN
SERVICE

0 New access token

The STS is in full control over access
tokens and refresh tokens, enabling

Request with e
token revocation if desired

access token

Token introspection °

for reference token

Request with e

access token Token introspection e

e Introspection response with the
for reference token

claims associated with the token

A @ Introspection response with the
claims associated with the token

Reference tokens cannot be interpreted
without token introspection, causing
significant overhead

, @PhilippeDeRyck

Reference tokens sound awesome,

let's GOOOOO0O!

’ @PhilippeDeRyck

How fast can you revoke an access token?

’ @PhilippeDeRyck

PRACTICAL GUIDELINES ON ACCESS TOKEN TYPES

* How short can you make your access token's lifetime?
e Short lifetimes reduce the window of abuse and force the client to contact the STS

* Frontend applications are more sensitive, so should have shorter token lifetimes
* 5-10 minutes is quite common

* How important is revocation for your application?
* |f a small potential window of abuse is acceptible, short token lifetimes are a good option
* |If no abuse is acceptible, reference tokens offer the most control

e Revocation sounds great on paper, but can you implement it?
* Manual revocation processes will be ineffective with token lifetimes of 5—10 minutes
* Automatic revocation with anomaly-detection systems would be effective

’ @PhilippeDeRyck

ACCESS TOKEN TYPES

* The STS decides on the security properties of access tokens
* Clients only send access tokens, so they are agnostic of the token type and its properties
* The APl will need to understand how to process different token types

* In practice, self-contained JWT tokens are common for distributed scenarios
* Running token introspection between different parties is often difficult
* Keep token lifetimes as short as possible

* Reference tokens are often used for internal systems
* On-premise token introspection is easier to implement
* Can also be implemented with an API gateway that translates tokens

y @PhilippeDeRyck

Token security is often a trade-off between
performance and security. Short-lived self-contained
access tokens typically offer a good balance

, @PhilippeDeRyck

ADVANCED TOKEN SECURITY

’ @PhilippeDeRyck

o Run an OAuth 2.0 flow
>

CLIENT G Reference access token
and refresh token

SECURITY
TOKEN
SERVICE

Request with o

access token Token introspection e
for reference token

e Introspection response with the
claims associated with the token

, @PhilippeDeRyck

, @PhilippeDeRyck

0 Run an OAuth 2.0 flow
>

a Reference access token
and refresh token

SECURITY
TOKEN
SERVICE

CLIENT

Request with
access token

Token introspection
for reference token

Introspection response with the
claims associated with the token

Use access token to perform
unauthorized operation

y

Bearer tokens can be abused by
anyone who holds them, including
APIs receiving them

Solutions include restricting the

token audience and using
sender-constrained tokens

An OAuth 2.0 initialization URI

1 https://sts.restograde.com/authorize

2 ?response_type=code

3 &client_id=1Y5g0BKB7Mow4yD lb6rdGPs02i1g70sv

4 &scope=read:restaurants write:reviews

5 &resource=https://api.restograde.com/reviews The identifiers of the requested
: +

7

8

&resource=https://api.restograde.com/restaurants resource servers (APIs)
&redirect_uri=https://app.restograde.com/callback
& [.. state / code_challenge / code_challenge_method ..]

Requesting access tokens with a specific resource

POST /oauth/token
Host: sts.restograde.com

grant_type=authorization_code
&client_id=1Y5g0BKB7Mow4yD1b6rdGPs02i1g70sv
&code=Sp1x10BeZQQYbYSO6WXSbIA
&resource=https://api.restograde.com/reviews e
& [.. redirect_uri / code_verifier ..]

Requesting an access token for a
specific resource server (API)

0O O Ul &~ WN -

, @PhilippeDeRyck

The access token issued by the STS

1A

2 "iss": "https://sts.restograde.com",

3 "aud": "https://api.restograde.com/reviews", e
4 "sub": "2262430d-c9cb-484f-9770-805893ff9518",
5 "scope'": "reviews:write'" e

6 %

Requesting access tokens with a specific resource

POST /oauth/token
Host: sts.restograde.com

grant_type=authorization_code
&client_id=1Y5g0BKB7Mow4yD1b6rdGPs02i1g70sv
&code=Sp1x10BeZQQYbYSO6WXSbIA

A specific target audience

The STS does "downscoping" by only
including relevant scopes for the audience

Requesting an access token for a

&resource=https://api.restograde.com/reviews e
& [.. redirect_uri / code_verifier ..]

0O O Ul &~ WN -

, @PhilippeDeRyck

specific resource server (API)

USING RESOURCE INDICATORS

* A client can use the resource parameter to indicate the target audience
* The client requests a set of resources when initializing the Authorization Code flow
* The exchange of an authorization code/refresh token is done with a specific resource

* Resource indicators are URIs which are defined by the STS

* |tis recommended to use the full URL of an API to identify a resource
* E.g., https://api.restograde.com, https://api.restograde.com/reviews

* When not possible, the use of URNs allows for a more flexible naming scheme
* E.g., urn:restograde:reviews

* The resulting access token will be tailored towards the requested resource
* The audience will contain the resource indicator (aud claim in a JWT)
* The scopes will typically be limited to relevant scopes for the audience (downscoping)

This new OAuth 2.0 specification (RFC 8707) allows
clients to request permission to access multiple APIs,
but only request access tokens for a single API

, @PhilippeDeRyck

Sender-constrained tokens can be used to

link access/refresh tokens to a specific client

’ @PhilippeDeRyck

PROOF-OF-POSSESSION THROUGH TLS CERTIFICATES

¢

a Setup an mTLS connection and
exchange an authorization code

Generate tokens and bind
them to the certificate

a Respond with tokens SECURITY
CLIENT TOKEN
SERVICE

Setup an mTLS connection
P e Response

and make an API call
ﬁ

with the access token
API

e Verify that the TLS certificate matches
the certificate in the access token

y @PhilippeDeRyck °IZ> Public key Eﬁ Private key - Certificate

SENDER-CONSTRAINED TOKENS WITH MTLS

A JWT access token with an embedded certificate fingerprint

1A

2 "sub": "b6rdGPs02iBKB7s02i",

3 "aud": "https://api.example.com",

4 "azp": "1Y59g0BKB7Mow4yD1b6rdGPs02i1g70sv",
5 "iss": "https://sts.restograde.com/",

6 "exp": 1419356238,

7 "iat": 1419350238,

8 "scope": "read write",

9 "enf': {

10 "x5t#5256": "bwcK0@esc3ACC3DB2Y5_1ESsXE8091tc0@5089jdN-dg2" e—— The fingerprint of the cert
11 s

12}

, @PhilippeDeRyck

SENDER-CONSTRAINED TOKENS WITH MTLS

* The cnf claim contains information about the proof-of-possession key
* JWT access tokens directly embed the cnf claim in the token
* For reference access tokens, the STS provides the cnf claim during introspection

* The only responsibility for a client is using mTLS with a client certificate

* An STS that supports sender constrained access tokens will use the certificate fingerprint
* The hash in the x5t#5256 value uniquely identifies the certificate and its public key

* An APl enforcing proof-of-possession will look for the cnf claim can verify the fingerprint
* If the connection is setup with the right certificate, the client must possess the private key

* Sender constrained access tokens are much harder to abuse
* An attacker would need to completely compromise a client to abuse access tokens

THE CONCEPT OF DPOP

Generate a
public/private key palr
e Exchange an authorization code
along with the proof and public key

Generate a DPoP proof e
with the private key

Generate a DPoP proof
with the private key

SECURITY
CLIENT TOKEN
SERVICE

e Respond with tokens

Send request along with e
access token and DPoP proof

@ Response
DPoP ensures that only the client
e—— holding the private key can use the

QQ access token on API calls

API

e Verify the DPoP proof and its
binding to the access token

, @PhilippeDeRyck

@ Public key

e Verify that the client
possesses the private key

Generate tokens and bind
them to the public key

(=2 Private key

DEMONSTRATION OF PROOF-OF-P0OSSESSION (DPOP)

* DPoP is an application-layer PoP mechanism relying on JWTs
* The client generates a private/public key pair and proves possession of the private key
* The STS links access tokens / refresh tokens to the public key of the client
* The client provides a signed JWT along with any request carrying a DPoP token

* Possession of the private key is done through a DPoP proof JIWT
* The JWT has type dpop+jwt and contains metadata about the request being sent
* The metadata includes the HTTP method and HTTP endpoint that the request is going to
* Further details (request headers, request body, ...) are not included in the DPoP proof

 With DPoP, access tokens and refresh tokens become sender-constrained
* They no longer act as bearer tokens, making it significantly harder to abuse stolen tokens

The use of sender-constrained tokens is considered a
best practice for sensitive OAuth 2.0 clients
(both backend and native)

, @PhilippeDeRyck

PASETO AS AN ALTERNATIVE TO JWT

’ @PhilippeDeRyck

PLATFORM-AGNOSTIC SECURITY TOKENS (PASETO)

* PASETO is explicitly developed to counter vulnerabilities in the JWT spec
* The use of the none algorithm
* The potential confusion between HMACs and digital signatures
* The pitfalls with handling encrypted JWTs
* The wide range of supported signing and encryption algorithms

* The goal of PASETO is to offer a secure-by-design standard to represent tokens
* Versioned tokens instead of algorithm agility
* Fixed algorithm selection for each version to avoid confusion
» Specification of the purpose of a token (local use or distributed use)

y @PhilippeDeRyck

v2.local.sIgVm@es9uswZ1iPdyX00i99czPbp 141K0Uu45e62BvCaL5H3kHNibrbRZkM1-wW@91ARzNexLY8g0AGZA0—-

WCNsgs8GZLCLEKS5TIbgQj f__yExZRh2gMngxfVr_KS9WogKV lU-
WrAG6TRUXZ0430SJQkeNBnB8Gq4 rN2A8HYeA3ms20up80dgz2rpY79F9ILVPrAIzxNkDSE51vAxv50BTShuel3F3hXgReHsDv2PJCn

MBNMyE_AfePxJ6WJ1obXSIUpSs0QX6wjwdQdOIcXZ853c-NPYMVU-abXJhhLVvvHYNZPilwcEvjt.eylraWQiOiAiMTIzNDUifQ

v2.public.eyJpZCI6ICIOMTBkZjI5N1i040WQ1LTQzODAtODQYyMy0@2ZjIkNZzMWNDA3SNDQiLCAibmFtZSI6ICISYWS5KYWXxSIER1Z2d1l

cyIsICIleHAi01iAiMjAX0SOXMCOXMFQxMTowMzoyNCOwWNzowMCI9xe6hZBYn8IZ0ImgL9k1VjTc17Dz4T-
Lo2FvIxeFXQNtNY3QAyCaa5XW-29n-9nV-beU6z7P-YF97 1PFvnPfnDA.eyJraWQiOiAiMTIzNDUifQ

’ @PhilippeDeRyck

. local.sIgVm@es9uswZ1iPdyX00199czPbp141K0Uu45e62BvCalL5H3kHNibrbRZkM1-wWA91ARzNexLY8g0GZAQ-
Nsgs8GZLCLEK5TIbgQjf__yExZRh2gMngxfVr_KS9WogKVlU-
rAG6TRUXZ0430SJQkeNBnB8Gq4 rN2A8HYeA3ms20up80dgz2rpY79F9ILVPrAIzxNkDSE51vAxv50BTShuel3F3hXgReHsDv2PJCn
BnMyE_AfePxJ6WJ1obXSIUpSs0QX6wjwdQd0IcXZ853¢c-NPYMVU-abXJhhLVvvHYNZPilwcEvjt.eyJraWQi0iAiMTIzNDUifQ

The version indicates how the
token is structured and which
algorithm is used (currently v2)

®
.public.eyJpZCI6ICIOMTBKZjI5N1040WQ1LTQz0ODAtODQyMy02Z7jIkNzMWNDA3NDQiLCAibmFtZSI6ICISYWS5KkYWxsSIER1Z2d1

cyIsICIleHAi01iAiMjAX0SOXMCOXMFQxMTowMzoyNCOwWNzowMCI9xe6hZBYn8IZ0ImgL9k1VjTc17Dz4T-
Lo2FvIxeFXQNtNY3QAyCaa5XW-29n-9nV-beU6z7P-YF97 1PFvnPfnDA.eyJraWQiOiAiMTIzNDUifQ

y @PhilippeDeRyck

V2. . sIgVm@es9uswZ1iPdyX00199czPbp141K0Uu45e62BvCalL5H3kHNibrbRZkM1-wW@91ARzNexLY8g0GZA0-

WCNsg¥BGZLCTEK5TIbgQj f__yEXZRh2gMngxfVr_KS9WoqKV1U-
WrAG6TRUXZ0430SIQkeNBnB8Gq4 rN2A8HYeA3ms20up80dgz2 rpY79F9ILVPrAIzxNKDSE51vAXv50BTShue 13F3hXgReHsDv2PICn

MBnMyH AfePxJ6WJ1obXSIUpSs0QX6wjwdQdOIcXZ853c-NPYMVU-abXJhhLVvvHYNZPilwcEvjt.eylraWQiOiAiMTIzNDUifQ

The purpose indicates how the token is
secured (HMAC vs digital signature) and
makes explicit how the token should be used

V2. .eyJpZCI6GICIOMTBkZjI5SN1040WQ1LTQzODAtODQYyMy02ZjJkNzMWNDA3NDQiLCAibmFtZSI6ICISYWS5KYWXxSIER1Z2d1

cyIsICIleHAi01iAiMjAX0SOXMCOXMFQxMTowMzoyNCOwWNzowMCI9xe6hZBYn8IZ0ImgL9k1VjTc17Dz4T-
Lo2FvIxeFXQNtNY3QAyCaa5XW-29n-9nV-beU6z7P-YF97 1PFvnPfnDA.eyJraWQiOiAiMTIzNDUifQ

y @PhilippeDeRyck

v2.local.sIgVm@es9uswZ1iPdyX00i99czPbp 141K0Uu45e62BvCaL5H3kHNibrbRZkM1-wW@91ARzNexLY8g0AGZA0—-

WCNsgs8GZLCLEKS5TIbgQj f__yExZRh2gMngxfVr_KS9WogKV lU-
WrAG6TRUXZ0430SJQkeNBnB8Gq4 rN2A8HYeA3ms20up80dgz2rpY79F9ILVPrAIzxNkDSE51vAxv50BTShuel3F3hXgReHsDv2PJCn

MBNMyE_AfePxJ6WJ1obXSIUpSs0QX6wjwdQdOIcXZ853c-NPYMVU-abXJhhLVvvHYNZPilwcEvjt.eylraWQiOiAiMTIzNDUifQ

!

V2 local tokens provide data integrity and
data confidentiality for the payload (using
authenticated encryption)

v2.public.eyJpZCI6ICIOMTBkZjI5N1i040WQ1LTQzODAtODQYyMy0@2ZjIkNZzMWNDA3SNDQiLCAibmFtZSI6ICISYWS5KYWXxSIER1Z2d1l

cyIsICIleHAi01iAiMjAX0SOXMCOXMFQxMTowMzoyNCOwWNzowMCI9xe6hZBYn8IZ0ImgL9k1VjTc17Dz4T-
Lo2FvIxeFXQNtNY3QAyCaa5XW-29n-9nV-beU6z7P-YF97 1PFvnPfnDA.eyJraWQiOiAiMTIzNDUifQ

!

V2 public tokens provide data integrity
using digital signatures

’ @PhilippeDeRyck

PASETO PROS AND CONS

Robust and unambiguous algorithms No official specification, just an expired draft
Purpose of tokens is easier to understand No guidance on explicit typing for tokens
No specific payload format (e.g., JSON) No support for encrypting public tokens

Library devs are still responsible for security

, @PhilippeDeRyck

PASETO is simpler and less ambiguous than the JWT
specifications, but the lack of use/support makes it
less suited than JWTs

, @PhilippeDeRyck

FIXING JWTS IN YOUR ARCHITECTURE

1 Avoid HMACs and hardcode one digital signature algorithm

2 Use explicit typing to indicate the purpose of a token

3 Write a wrapper library to encapsulate the dirty details

’ @PhilippeDeRyck

Internet Engineering Task Force (IETF) Y. Sheffer

Request for Comments: 8725 Intuit
BCP: 225 D. Hardt
Updates: 7519

Category: Best Current Practice M. Jones
ISSN: 2070-1721 Microsoft

February 2020

JSON Web Token Best Current Practices

Abstract

JSON Web Tokens, also known as JWTs, are URL-safe JSON-based security
tokens that contain a set of claims that can be signed and/or
encrypted. JWTs are being widely used and deployed as a simple
security token format in numerous protocols and applications, both in
the area of digital identity and in other application areas. This
Best Current Practices document updates RFC 7519 to provide
actionable guidance leading to secure implementation and deployment
of JWTs.

CONCLUSION

’ @PhilippeDeRyck

KEY TAKEAWAYS

1 Follow current best practices for handling JWTs (or use PASETO)

2 Remember that JWTs/PASETOs only represent claims, nothing else

3 Carefully analyze token security requirements in your architecture

’ @PhilippeDeRyck

y @PhilippeDeRyck

This online course helps you understand

the details of OAuth 2.0 and OpenID Connect

o0 e 1 Mastering OAuth 2.0 and Openll X =+

jol
2
S

1

q C @ RN & courses.pragmaticwebsecurity.com/bundles/mastering-oauth-oidc

@ Pragmatic Web Security SIGN IN

Mastering OAuth 2.0 and OpenlD Connect

Your shortcut towards understanding OAuth 2.0 and OpenID Connect

OAuth 2.0 and OpenlID Connect are crucial for securing web applications, mobile applications, APls, and
microservices. Unfortunately, getting a good grip on the purpose and use cases for these technologies
is insanely difficult. As a result, many implementations use incorrect configurations or contain security

vulnerabilities.

https://courses.pragmaticwebsecurity.com

Thank you for watching!

Connect on social media for more
in-depth security content

@PhilippeDeRyck /in/PhilippeDeRyck

