
https://Pragmatic Web Security.com

DR. PHILIPPE DE RYCK

TRADE-OFFS WITH TOKEN SECURITY

@PhilippeDeRyck

eyJhbGciOiJSUzI1NiIsInR5cCI6IkpXVCIsImtpZCI6Ik5UVkJPVFUzTXpCQk9FVXdOemhCUTBWR0
1rUTBRVVU1UVRZeFFVVXlPVU5FUVVVeE5qRXlNdyJ9.eyJpc3MiOiJodHRwczovL3N0cy5yZXN0b2d
yYWRlLmNvbS8iLCJzdWIiOiJhdXRoMHw1ZWI5MTZjMjU4YmRiNTBiZjIwMzY2YzYiLCJhdWQiOlsia
HR0cHM6Ly9hcGkucmVzdG9ncmFkZS5jb20iLCJodHRwczovL3Jlc3RvZ3JhZGUuZXUuYXV0aDAuY29
tL3VzZXJpbmZvIl0sImlhdCI6MTU4OTc3NTA3MiwiZXhwIjoxNTg5ODYxNDcyLCJhenAiOiJPTEtOb
jM4OVNVSW11ZkV4Z1JHMVJpbExTZ2RZeHdFcCIsInNjb3BlIjoib3BlbmlkIHByb2ZpbGUgZW1haWw
gb2ZmbGluZV9hY2Nlc3MifQ.XzJOXtTXOGOSbCFvp4yZGJzh7XhMmOmI2XxtjWdlODz_siI-
u8h11elcr8LwX6-hL20QOW0eStzBzmm1FM_tS7MxuKkYx8QlTWOURPembVKZOhNi8kN-
1j0pyc0uzve7Jib5vcxmkPwqpcVDFACgP85_0NYe4zXHKxCA5_8VOn05cRCDSkNMTFzGJCT9ipCcNX
aVGdksojYGqQzezjpzzzwrtPEkiyFLFtDPZAl0MleF3oFAOCBK0UKuNjJ_cSBbUsaIwfvK0WH47AwF
rRn_TxL4S1P3j3b1GgBm8tAqXysY84VZu0rSg3zrZj1PnoqPD4mbOXds20xafCr9wR4WTQ

vSvhNDeQLqrzRbvA2eeYE2PthB1cBimS

I am Dr. Philippe De Ryck

Founder of Pragmatic Web Security

Google Developer Expert

Auth0 Ambassador

SecAppDev organizer

https://pragmaticwebsecurity.com

I help developers with security

Academic-level security training

Hands-on in-depth online courses

Security advisory services

@PhilippeDeRyck

THE TECHNICALITIES OF JSON WEB TOKENS

@PhilippeDeRyck

The base64-encoded
header and payload,

along with the signature

The signature is crucial
to ensure the integrity of
the header and payload

@PhilippeDeRyck

SEC
RET

JWT header

The data to protect
with the HMAC

A cryptographic
HMAC function (e.g.

HMAC-SHA256)

The HMAC calculated
on the data with the

secret

A secret key to ensure
the HMAC is unique

5d672d79c15b1…e06b59245d672d79c15b1…e06b5924
JWT payload

JWT header

JWT payload

JWT HMAC

JWT header

JWT payload

JWT HMAC

@PhilippeDeRyck

SEC
RET

JWT header

The data to protect
with the HMAC

A cryptographic
HMAC function (e.g.

HMAC-SHA256)

The HMAC calculated
on the data with the

secret

A secret key to ensure
the HMAC is unique

5d672d79c15b1…e06b59245d672d79c15b1…e06b5924
JWT payload

JWT header

JWT payload

JWT HMAC

JWT header

JWT payload

JWT HMAC

SEC
RET

The input to the HMAC
is valid, so it was

generated with the
same data and secret

The data or the secret
are different

5d672d79c15b1…e06b5924

@PhilippeDeRyck

SEC
RET

JWT header
5d672d79c15b1…e06b59245d672d79c15b1…e06b5924

JWT payload

JWT header

JWT payload

JWT HMAC

JWT header

JWT payload

SEC
RET

5d672d79c15b1…e06b5924

@PhilippeDeRyck 9

HMACS CANNOT BE USED IN DISTRIBUTED SCENARIOS

HMAC generation and verification happens with
the same secret. Any verifier can also generate

arbitrary tokens.

Your secret should be more
random, and should not be

published on a Powerpoint slide

https://lab.wallarm.com/meet-jwt-heartbreaker-a-burp-extension-that-finds-thousands-weak-secrets-automatically/

Your secret should be more
random, and should not be

published on a Powerpoint slide

https://auth0.com/blog/brute-forcing-hs256-is-possible-the-importance-of-using-strong-keys-to-sign-jwts/

A key of the same size as the hash output
(for instance, 256 bits for "HS256") or

larger MUST be used with this algorithm.

@PhilippeDeRyck 12

AVOID HMACS AS MUCH AS POSSIBLE

HMACs with long-lived keys have fundamental
weaknesses, so it's better to use

public/private key signatures

@PhilippeDeRyck

JWT header

The data to protect
with the signature

A cryptographic
signing function (e.g.

RS256)

The signature
calculated on the data

with the private key

A private key belonging
to the service

5d672d79c15b1…e06b5924e06b5924…5d672d79c15b1
JWT payload

JWT header

JWT payload

JWT signature

JWT header

JWT payload

JWT signature

PRI
VAT

E

@PhilippeDeRyck

JWT header

The data to protect
with the signature

A cryptographic
signing function (e.g.

RS256)

The signature
calculated on the data

with the private key

A private key belonging
to the service

5d672d79c15b1…e06b5924e06b5924…5d672d79c15b1
JWT payload

JWT header

JWT payload

JWT signature

JWT header

JWT payload

JWT signature

The public key is uniquely
linked to the private key

The data is the same and the
signature is created with the

expected private key

The data is different
or the wrong signing

key has been used

PRI
VAT

E

PUB
LIC

?
@PhilippeDeRyck

Which signature algorithm should you use?

WHICH SIGNING ALGORITHM SHOULD YOU USE?

• In the rare case that HMACs suit your needs, the default HS256 is a solid choice

• For asymmetric signatures, the story is a bit more complicated
• RS256 is most widely supported and used, and is still considered secure for signatures

• In light of future-proofing implementations, the RSA crypto spec has deprecated RS256
• RS256 is actually JWT's shorthand for RSASSA-PKCS1-v1_5

• Instead, the spec recommends the use of RSASSA-PSS, known in the JWT world as PS256
• PS256, PS384, and PS512 are well supported by common JWT libraries

• An even better alternative to RSA are elliptic curve digital signatures (ECDSA)
• JWT libraries support ES256, which is unfortunately easy to misuse
• Instead, you should use of EdDSA, which has unfortunately little to no library support

• TL;DR: Use HS256 for HMACs and PS256 for asymmetric signatures
https://www.scottbrady91.com/JOSE/JWTs-Which-Signing-Algorithm-Should-I-Use

@PhilippeDeRyck 17

USE JWTS SIGNED WITH A PRIVATE KEY

The generator of a JWT uses the private key, but
the verifiers all use the public key. PS256 is a robust

choice for the signature algorithm.

https://threatpost.com/critical-vulnerabilities-affect-json-web-token-libraries/111943/

“
“

The Authentication API
prevented the use of

"alg: none" with a case
sensitive filter. This
means that simply

capitalising any letter
("alg: nonE"), allowed
tokens to be forged.

https://insomniasec.com/blog/auth0-jwt-validation-bypass

https://www.howmanydayssinceajwtalgnonevuln.com/

https://portswigger.net/bappstore/82d6c60490b540369d6d5d01822bdf61

@PhilippeDeRyck 22

ASSERT THE ALG CLAIM MAKES SENSE

The alg claim in the header indicates how the token
is signed. Ensure the claim corresponds to an
expected value (or hardcode the algorithm)

@PhilippeDeRyck

How should you
use this JWT?

@PhilippeDeRyck

Which one is the OAuth 2.-0
access token and which one is

the OIDC identity token?

JWTs should be explicitly typed. For an
access token, the typ should be set to
at+jwt to avoid token type confusion

@PhilippeDeRyck

EXPLICIT TYPING FOR JWTS

• JWTs are just a data representation and can be used for different scenarios
• Due to reserved claims, many JWTs contain similar values
• It can become tricky to differentiate between JWTs from the same service

• OAuth 2.0 access tokens and OIDC identity tokens are issued by the same server
• While both tokens contain similar claims, they serve a completely different purpose
• An attacker could gain API access by using an identity token, which should never happen

• JWT best practices recommend explicit JWT typing
• Instead of the generic JWT type, applications should use a custom type
• E.g., the recommendation for OAuth 2.0 access tokens is to use at+jwt

• Explicit typing is highly recommended for custom JWTs
• Only accept JWTs with proper typing and reject everything else

@PhilippeDeRyck 26

USE EXPLICIT TYPING FOR JWTS

The typ claim in the header indicates the type of
JWT token. Verify the type after having verified the

signature to avoid token confusion.

@PhilippeDeRyck

@PhilippeDeRyck 28

JWTS ARE JUST A REPRESENTATION OF CLAIMS

JWTs support the secure representation of claims,
nothing more. You are responsible for what you

build with JWTs and how you handle them.

@PhilippeDeRyck

USING JWTS IN PRACTICE

!
@PhilippeDeRyck

JWTs play a crucial role in the OAuth 2.0
and OpenID Connect ecosystem

KEY-BASED CLIENT AUTHENTICATION WITH JWT TOKENS

1Generate a
public/private key pair

Public key Private key

2 Register the public
key with the STS

3Generate a JWT and sign
with the private key

4 Send a request containing
the signed JWT

6 Response

5
Verify the signature
of the JWT with the
registered public key

@PhilippeDeRyck

@PhilippeDeRyck

The payload of the generated JWT

1
2
3
4
5
6
7
8

{
"iss": "test_client_jwt",
"sub": "test_client_jwt",
"aud": "https://sts2.restograde.com/auth/realms/Restograde",
"iat": 1590316085,
"exp": 1590316100,
"jti": "77bef630-361c-486b-bc68-763c6c1d8900"

}

The generation time of the JWT

The ID of the authenticating client

A unique value to prevent replay
The expiration time of the JWT

The identifier of the STS

@PhilippeDeRyck

The authentication request containing the JWT

1
2
3
4
5
6
7
8

POST /auth/realms/Restograde/protocol/openid-connect/token
Host: sts2.restograde.com

grant_type=client_credentials
&client_id=test_client_jwt
&client_assertion_type=urn:ietf:params:oauth:client-
assertion-type:jwt-bearer
&client_assertion=eyJhbGciOiJSUz…ZuTnMNQ

Running the client credentials flow
The ID of the authenticating client
Indicating JWT-based authentication

The JWT signed by the client

@PhilippeDeRyck 35

JWTS CAN BE USED FOR CLIENT AUTHENTICATION

RFC 7523 defines how to use JWTs for key-based
OAuth 2.0 client authentication (along with a

custom grant based on JWTs).

@PhilippeDeRyck

An OAuth 2.0 initialization URI

1
2
3
4
5
6
7
8

https://sts.restograde.com/authorize
?response_type=code
&client_id=lY5g0BKB7Mow4yDlb6rdGPsO2i1g7Osv
&scope=read
&redirect_uri=https://app.restograde.com/callback
&state=s0wzojm2w8c23xzprkk6
&code_challenge=JhEN0Amnj7B…Wh5PxWitZYK1woWh5PxWitZY
&code_challenge_method=S256

Indicates the authorization code flow
The client requesting access

Where the STS should send the code

The PKCE code challenge
The PKCE hash function

This URL cannot ensure the integrity of
the parameters, nor does it authenticate

the client that initiated the flow

These shortcomings can result in
advanced attacks, such as Redirection

URL rewriting or Mix-up attacks

!
@PhilippeDeRyck

JWT Secured Authorization Requests (JAR)
use JWTs to generate initialization URIs

@PhilippeDeRyck

An OAuth 2.0 initialization URI

1
2
3
4
5
6
7
8

https://sts.restograde.com/authorize
?client_id=lY5g0BKB7Mow4yDlb6rdGPsO2i1g7Osv
&request=eyJhbGciOiJQUzI1NiIsInR5cCI6Im9hdXRoLWF1dGh6LX
JlcStqd3QifQ.eyJpc3MiOiJsWTVnMEJLQjdNb3c0eURsYjZyZEdQc0
8yaTFnN09zdiIsImF1ZCI6Imh0dHBzOi8vc3RzLnJlc3RvZ3JhZGUuY
…
a8JSiQtbP4IKzGXvHoJvPh-T4OxgA9QZj9erIT2wEVBcieAO0340zl2
Y5Z953bgpSb4O4NbFKXa_lD4GTJ2LGF48IGjRQ

Indicates the client making the request

The configuration of the flow

The JWT is signed by the private
key of the client and contains all

the traditional flow
configuration parameters

@PhilippeDeRyck

The encoded JWT request

eyJhbGciOiJQUzI1NiIsInR5cCI6Im9hdXRoLWF
1dGh6LXJlcStqd3QiLCJraWQiOiJoaGJHeGxibW
RsSWpvaVNtaEZUIn0.eyJpc3MiOiJsWTVnMEJLQ
jdNb3c0eURsYjZyZEdQc08yaTFnN09zdiIsImF1
ZCI6Imh0dHBzOi8vc3RzLnJlc3RvZ3JhZGUuY29
tIiwicmVzcG9uc2VfdHlwZSI6ImNvZGUiLCJjbG
llbnRfaWQiOiJsWTVnMEJLQjdNb3c0eURsYjZyZ
EdQc08yaTFnN09zdiIsInJlZGlyZWN0X3VyaSI6
Imh0dHBzOi8vYXBwLnJlc3RvZ3JhZGUuY29tL2N
hbGxiYWNrIiwic2NvcGUiOiJyZWFkIiwic3RhdG
UiOiJzMHd6b2ptMnc4YzIzeHpwcmtrNiIsImNvZ
GVfY2hhbGxlbmdlIjoiSmhFTjBBbW5qN0LigKZX
aDVQeFdpdFpZSzF3b1doNVB4V2l0WlkiLCJjb2R
lX2NoYWxsZW5nZV9tZXRob2QiOiJTMjU2In0.LJ
pskbj0rYhwxt4Bwiiw1Ku-
nmhGuOFUvqBrv7xLFu6Tkkes6p9c7xvyulp017Q
ptCZlN5i7wQyXp5VY32fZ0dF9akGEhQymPSvyBe
wzZgDrEOM8ZD_-
LbQhlg2OwE3ekq4mwIsYVZVRA4RQJMmN9JuoQHU
cuBRDke_bdR1K6XosHQuy-
wEz7j8yix8vcqGgSe6MvPN3nZjShMAcTd9QJpZX
qin5NqXlByFj9iRecBygOK6snJwz7S2s79R6987
1Tz8Ap_vCcVtJRLinBCzyjS0JHEBMvrvuOxzxCH
4comCM96fyi47D5yRZFsUJmfIDJr1D4yOIVbQIu
2GKA_bULw

The payload of the decoded JWT object

1
2
3
4
5
6
7
8
9
10
11

{
"iss": "lY5g0BKB7Mow4yDlb6rdGPsO2i1g7Osv",
"aud": "https://sts.restograde.com",
"response_type": "code",
"client_id": "lY5g0BKB7Mow4yDlb6rdGPsO2i1g7Osv",
"redirect_uri": "https://app.restograde.com/callback",
"scope": "read",
"state": "s0wzojm2w8c23xzprkk6",
"code_challenge": "JhEN0Amnj … xWitZYK1woWh5PxWitZY",
"code_challenge_method": "S256"

}

The header of the decoded JWT object

1
2
3
4
5

{
"alg": "PS256",
"typ": "oauth-authz-req+jwt",
"kid": "hhbGxlbmdlIjoiSmhFT"

}

@PhilippeDeRyck

The payload of the decoded JWT object

1
2
3
4
5
6
7
8
9
10
11

{
"iss": "lY5g0BKB7Mow4yDlb6rdGPsO2i1g7Osv",
"aud": "https://sts.restograde.com",
"response_type": "code",
"client_id": "lY5g0BKB7Mow4yDlb6rdGPsO2i1g7Osv",
"redirect_uri": "https://app.restograde.com/callback",
"scope": "read",
"state": "s0wzojm2w8c23xzprkk6",
"code_challenge": "JhEN0Amnj … xWitZYK1woWh5PxWitZY",
"code_challenge_method": "S256"

}

The header of the decoded JWT object

1
2
3
4
5

{
"alg": "PS256",
"typ": "oauth-authz-req+jwt",
"kid": "hhbGxlbmdlIjoiSmhFT"

}

The issuer of the JWT is the client,
and the audience is the STS

The client ID must match the
client ID provided in the URL

The JWT request contains the
parameters that used to be

present in the URL

The JWT is explicitly typed

@PhilippeDeRyck

JWT SECURED AUTHORIZATION REQUEST (JAR)

• JAR allows the client to provide the flow configuration as a JWT
• Contrary to plain URL parameters, the JWT is signed by the client

• A signed JWT provides both data integrity and authenticity
• If preferred, the client can also encrypt the request JWT for confidentiality

• The JWT signing key of the client must be registered with the STS
• For confidential clients, this happens during client registration
• For native public clients, this can be done with dynamic client registration
• Web-based public clients do not benefit from JAR, since they already run in the browser

• The JAR specification is currently a draft, with limited implementation support
• JAR is considered extremely useful and will become widely supported when finalized

@PhilippeDeRyck 42

JWTS CAN BE USED FOR PARAMETER INTEGRITY

The upcoming JAR specification defines how to use
JWTs to guarantee the integrity of URL parameters

in redirect-based mechanisms.

?
@PhilippeDeRyck

What about token-based authentication?

@PhilippeDeRyck

2 Verify user
credentials

5Store the authentication
token in the browser

1 Authenticate with
username and password

4 Response containing the JWT

3
Generate an HMAC-
signed JWT with the
user's information

6 Send request with the JWT
in the Authorization header

7 Verify JWT and use user
info to handle request

Many applications use a JWT as a
replacement for a traditional
server-side session object …

@PhilippeDeRyck

MANAGING THE TOKEN LIFECYCLE

@PhilippeDeRyck

2 Verify user
credentials

5Keep track of the cookie
for this domain

1 Authenticate with
username and password

4 Response with session ID

3
Generate a session
object and return
identifier in a cookie

6 Send request with the
session cookie

7 Lookup the session data
and process request

@PhilippeDeRyck

@PhilippeDeRyck

The server is in complete control over
all session data, enabling immediate
session revocation when necessary

Scaling a system with server-side
sessions requires session

replication or sticky sessions

@PhilippeDeRyck

Pushing session data to the client in a
JWT avoids the need for a centralized

session store

"Session JWTs" typically have a
long lifetime (e.g., 8 – 12 hours)

What is the impact of pushing
session data in a JWT to the client?

There is no centralized control, so
"Session JWTs" cannot be revoked

@PhilippeDeRyck

JWTs can be revoked by putting their
unique ID on a revocation list, so that

the backend can verify the status

@PhilippeDeRyck

The signing secret for JWTs can be
changed, making all previously

issued JWTs invalid

@PhilippeDeRyck

The backend can use a different key for
each user, so that we can rotate a

single key to revoke old tokens

This pattern requires using data from
the JWT before it is verified to retrieve
the correct signature verification key

“ ““ “
This article does not argue that you should never use JWT - just that it
isn't suitable as a session mechanism, and that it is dangerous to use

it like that. Valid usecases do exist for them, in other areas.

54

@PhilippeDeRyck 55

JWTS ARE JUST A WAY TO REPRESENT CLAIMS

JWTs are not a session mechanism and should not
be used as one. Using JWTs as authorization tokens

requires a supporting ecossytem.

!
@PhilippeDeRyck

OAuth 2.0 refresh tokens are crucial to
improve the properties of access tokens

@PhilippeDeRyck

3Request with
access token

1 Run an OAuth 2.0 flow

2 JWT access token and refresh token

4 Request new access token
with refresh token

5 New access token

6Request with
access token

The access token has a short
lifetime (e.g., 10 minutes), and

the refresh token has a long
lifetime (e.g., 12 hours)

The STS is in full control
over the refresh token,

enabling token
revocation if desired

@PhilippeDeRyck 58

JWT ACCESS TOKENS ARE SELF-CONTAINED

JWT access tokens are also known as self-contained
access tokens. They can be independently verified

by APIs using the public key of the STS.

@PhilippeDeRyck

3Request with
access token

1 Run an OAuth 2.0 flow

2 JWT access token and refresh token

4 Request new access token
with refresh token

5 New access token

6Request with
access token

The access token has a short
lifetime (e.g., 10 minutes), and

the refresh token has a long
lifetime (e.g., 12 hours)

The STS is in full control
over the refresh token,

enabling token
revocation if desired

Only the refresh token can be revoked. Self-
contained (JWT) access tokens typically

remain valid for their entire lifetime

@PhilippeDeRyck

3Request with
access token

1 Run an OAuth 2.0 flow

2 Reference access token
and refresh token

6 Request new access token
with refresh token

7 New access token

8Request with
access token

4Token introspection
for reference token

5 Introspection response with the
claims associated with the token9Token introspection

for reference token

10 Introspection response with the
claims associated with the token

The STS is in full control over access
tokens and refresh tokens, enabling

token revocation if desired

Reference tokens cannot be interpreted
without token introspection, causing

significant overhead

!
@PhilippeDeRyck

Reference tokens sound awesome,
let's GOOOOOO!

?
@PhilippeDeRyck

How fast can you revoke an access token?

@PhilippeDeRyck

PRACTICAL GUIDELINES ON ACCESS TOKEN TYPES

• How short can you make your access token's lifetime?
• Short lifetimes reduce the window of abuse and force the client to contact the STS
• Frontend applications are more sensitive, so should have shorter token lifetimes

• 5 - 10 minutes is quite common

• How important is revocation for your application?
• If a small potential window of abuse is acceptible, short token lifetimes are a good option
• If no abuse is acceptible, reference tokens offer the most control

• Revocation sounds great on paper, but can you implement it?
• Manual revocation processes will be ineffective with token lifetimes of 5 – 10 minutes
• Automatic revocation with anomaly-detection systems would be effective

@PhilippeDeRyck

ACCESS TOKEN TYPES

• The STS decides on the security properties of access tokens
• Clients only send access tokens, so they are agnostic of the token type and its properties
• The API will need to understand how to process different token types

• In practice, self-contained JWT tokens are common for distributed scenarios
• Running token introspection between different parties is often difficult
• Keep token lifetimes as short as possible

• Reference tokens are often used for internal systems
• On-premise token introspection is easier to implement
• Can also be implemented with an API gateway that translates tokens

@PhilippeDeRyck 65

LOOK AT THE FULL PICTURE OF A TOKEN LIFECYCLE

Token security is often a trade-off between
performance and security. Short-lived self-contained

access tokens typically offer a good balance

@PhilippeDeRyck

ADVANCED TOKEN SECURITY

@PhilippeDeRyck

3Request with
access token

1 Run an OAuth 2.0 flow

2 Reference access token
and refresh token

4Token introspection
for reference token

5 Introspection response with the
claims associated with the token

@PhilippeDeRyck

6 Use access token to perform
unauthorized operation

3Request with
access token

1 Run an OAuth 2.0 flow

2 Reference access token
and refresh token

4Token introspection
for reference token

5 Introspection response with the
claims associated with the token

Bearer tokens can be abused by
anyone who holds them, including

APIs receiving them

Solutions include restricting the
token audience and using
sender-constrained tokens

@PhilippeDeRyck

An OAuth 2.0 initialization URI

1
2
3
4
5
6
7
8

https://sts.restograde.com/authorize
?response_type=code
&client_id=lY5g0BKB7Mow4yDlb6rdGPsO2i1g7Osv
&scope=read:restaurants write:reviews
&resource=https://api.restograde.com/reviews
&resource=https://api.restograde.com/restaurants
&redirect_uri=https://app.restograde.com/callback
& [… state / code_challenge / code_challenge_method …]

The identifiers of the requested
resource servers (APIs)

Requesting access tokens with a specific resource

1
2
3
4
5
6
7
8

POST /oauth/token
Host: sts.restograde.com

grant_type=authorization_code
&client_id=lY5g0BKB7Mow4yDlb6rdGPsO2i1g7Osv
&code=SplxlOBeZQQYbYS6WxSbIA
&resource=https://api.restograde.com/reviews
& [… redirect_uri / code_verifier …]

Requesting an access token for a
specific resource server (API)

@PhilippeDeRyck

Requesting access tokens with a specific resource

1
2
3
4
5
6
7
8

POST /oauth/token
Host: sts.restograde.com

grant_type=authorization_code
&client_id=lY5g0BKB7Mow4yDlb6rdGPsO2i1g7Osv
&code=SplxlOBeZQQYbYS6WxSbIA
&resource=https://api.restograde.com/reviews
& [… redirect_uri / code_verifier …]

Requesting an access token for a
specific resource server (API)

The access token issued by the STS

1
2
3
4
5
6

{
"iss": "https://sts.restograde.com",
"aud": "https://api.restograde.com/reviews",
"sub": "2262430d-c9cb-484f-9770-805893ff9518",
"scope": "reviews:write"

}

A specific target audience

The STS does "downscoping" by only
including relevant scopes for the audience

USING RESOURCE INDICATORS

• A client can use the resource parameter to indicate the target audience
• The client requests a set of resources when initializing the Authorization Code flow
• The exchange of an authorization code/refresh token is done with a specific resource

• Resource indicators are URIs which are defined by the STS
• It is recommended to use the full URL of an API to identify a resource

• E.g., https://api.restograde.com, https://api.restograde.com/reviews
• When not possible, the use of URNs allows for a more flexible naming scheme

• E.g., urn:restograde:reviews

• The resulting access token will be tailored towards the requested resource
• The audience will contain the resource indicator (aud claim in a JWT)
• The scopes will typically be limited to relevant scopes for the audience (downscoping)

@PhilippeDeRyck 72

RESOURCE INDICATORS SUPPORT LIMITING AUDIENCES

This new OAuth 2.0 specification (RFC 8707) allows
clients to request permission to access multiple APIs,

but only request access tokens for a single API

!
@PhilippeDeRyck

Sender-constrained tokens can be used to
link access/refresh tokens to a specific client

@PhilippeDeRyck

PROOF-OF-POSSESSION THROUGH TLS CERTIFICATES

Public key Private key

2 Generate tokens and bind
them to the certificate

1 Setup an mTLS connection and
exchange an authorization code

3 Respond with tokens

4Setup an mTLS connection
and make an API call

with the access token

6 Response

5 Verify that the TLS certificate matches
the certificate in the access token

Certificate

@PhilippeDeRyck

SENDER-CONSTRAINED TOKENS WITH MTLS

A JWT access token with an embedded certificate fingerprint

1
2
3
4
5
6
7
8
9
10
11
12

{
"sub": "b6rdGPsO2iBKB7sO2i",
"aud": "https://api.example.com",
"azp": "lY5g0BKB7Mow4yDlb6rdGPsO2i1g7Osv",
"iss": "https://sts.restograde.com/",
"exp": 1419356238,
"iat": 1419350238,
"scope": "read write",
"cnf": {
"x5t#S256": "bwcK0esc3ACC3DB2Y5_lESsXE8o9ltc05O89jdN-dg2"

}
}

The fingerprint of the cert

SENDER-CONSTRAINED TOKENS WITH MTLS

• The cnf claim contains information about the proof-of-possession key
• JWT access tokens directly embed the cnf claim in the token
• For reference access tokens, the STS provides the cnf claim during introspection

• The only responsibility for a client is using mTLS with a client certificate
• An STS that supports sender constrained access tokens will use the certificate fingerprint

• The hash in the x5t#S256 value uniquely identifies the certificate and its public key
• An API enforcing proof-of-possession will look for the cnf claim can verify the fingerprint

• If the connection is setup with the right certificate, the client must possess the private key

• Sender constrained access tokens are much harder to abuse
• An attacker would need to completely compromise a client to abuse access tokens

@PhilippeDeRyck

THE CONCEPT OF DPOP
1Generate a

public/private key pair

Public key Private key

5 Generate tokens and bind
them to the public key

2Generate a DPoP proof
with the private key

3 Exchange an authorization code
along with the proof and public key

6 Respond with tokens

4 Verify that the client
possesses the private key

8Send request along with
access token and DPoP proof

10 Response

9 Verify the DPoP proof and its
binding to the access token

7Generate a DPoP proof
with the private key

DPoP ensures that only the client
holding the private key can use the

access token on API calls

DEMONSTRATION OF PROOF-OF-POSSESSION (DPOP)

• DPoP is an application-layer PoP mechanism relying on JWTs
• The client generates a private/public key pair and proves possession of the private key
• The STS links access tokens / refresh tokens to the public key of the client
• The client provides a signed JWT along with any request carrying a DPoP token

• Possession of the private key is done through a DPoP proof JWT
• The JWT has type dpop+jwt and contains metadata about the request being sent
• The metadata includes the HTTP method and HTTP endpoint that the request is going to
• Further details (request headers, request body, …) are not included in the DPoP proof

• With DPoP, access tokens and refresh tokens become sender-constrained
• They no longer act as bearer tokens, making it significantly harder to abuse stolen tokens

@PhilippeDeRyck 79

USE SENDER-CONSTRAINED TOKENS

The use of sender-constrained tokens is considered a
best practice for sensitive OAuth 2.0 clients

(both backend and native)

@PhilippeDeRyck

PASETO AS AN ALTERNATIVE TO JWT

@PhilippeDeRyck

PLATFORM-AGNOSTIC SECURITY TOKENS (PASETO)

• PASETO is explicitly developed to counter vulnerabilities in the JWT spec
• The use of the none algorithm
• The potential confusion between HMACs and digital signatures
• The pitfalls with handling encrypted JWTs
• The wide range of supported signing and encryption algorithms

• The goal of PASETO is to offer a secure-by-design standard to represent tokens
• Versioned tokens instead of algorithm agility
• Fixed algorithm selection for each version to avoid confusion
• Specification of the purpose of a token (local use or distributed use)

@PhilippeDeRyck

A local PASETO token (corresponds to an HMAC-signed JWT)

v2.local.sIgVm0es9uswZliPdyXOOi99czPbpl41KOUu45e62BvCaL5H3kHNibrbRZkM1-wW091ARzNexLY8g0GZA0-
WCNsgs8GZLClEk5TJbgQjf__yExZRh2qMnqxfVr_KS9WoqKVlU-
WrAG6TRUXZo43OSJQkeNBnB8Gq4rN2A8HYeA3ms20up80dgz2rpY79F9ILvPrAIzxNkDSE51vAxv50BTShuel3F3hXgReHsDv2PJCn
MBnMyE_AfePxJ6WJ1obXSIUpSsOQX6wjwdQdOIcXZ853c-NPYMVU-abXJhhLVvvHyNZPi1wcEvjt.eyJraWQiOiAiMTIzNDUifQ

A public PASETO token (corresponds to a JWT signed with a private key)

v2.public.eyJpZCI6ICI0MTBkZjI5Ni04OWQ1LTQzODAtODQyMy02ZjJkNzMwNDA3NDQiLCAibmFtZSI6ICJSYW5kYWxsIERlZ2dl
cyIsICJleHAiOiAiMjAxOS0xMC0xMFQxMTowMzoyNC0wNzowMCJ9xe6hZBYn8IZoJmgL9k1VjTcl7Dz4T-
lo2FvIxeFXQNtNY3QAyCaa5XW-29n-9nV-beU6z7P-YF97lPFvnPfnDA.eyJraWQiOiAiMTIzNDUifQ

@PhilippeDeRyck

A local PASETO token (corresponds to an HMAC-signed JWT)

v2.local.sIgVm0es9uswZliPdyXOOi99czPbpl41KOUu45e62BvCaL5H3kHNibrbRZkM1-wW091ARzNexLY8g0GZA0-
WCNsgs8GZLClEk5TJbgQjf__yExZRh2qMnqxfVr_KS9WoqKVlU-
WrAG6TRUXZo43OSJQkeNBnB8Gq4rN2A8HYeA3ms20up80dgz2rpY79F9ILvPrAIzxNkDSE51vAxv50BTShuel3F3hXgReHsDv2PJCn
MBnMyE_AfePxJ6WJ1obXSIUpSsOQX6wjwdQdOIcXZ853c-NPYMVU-abXJhhLVvvHyNZPi1wcEvjt.eyJraWQiOiAiMTIzNDUifQ

A public PASETO token (corresponds to a JWT signed with a private key)

v2.public.eyJpZCI6ICI0MTBkZjI5Ni04OWQ1LTQzODAtODQyMy02ZjJkNzMwNDA3NDQiLCAibmFtZSI6ICJSYW5kYWxsIERlZ2dl
cyIsICJleHAiOiAiMjAxOS0xMC0xMFQxMTowMzoyNC0wNzowMCJ9xe6hZBYn8IZoJmgL9k1VjTcl7Dz4T-
lo2FvIxeFXQNtNY3QAyCaa5XW-29n-9nV-beU6z7P-YF97lPFvnPfnDA.eyJraWQiOiAiMTIzNDUifQ

The version indicates how the
token is structured and which

algorithm is used (currently v2)

@PhilippeDeRyck

A local PASETO token (corresponds to an HMAC-signed JWT)

v2.local.sIgVm0es9uswZliPdyXOOi99czPbpl41KOUu45e62BvCaL5H3kHNibrbRZkM1-wW091ARzNexLY8g0GZA0-
WCNsgs8GZLClEk5TJbgQjf__yExZRh2qMnqxfVr_KS9WoqKVlU-
WrAG6TRUXZo43OSJQkeNBnB8Gq4rN2A8HYeA3ms20up80dgz2rpY79F9ILvPrAIzxNkDSE51vAxv50BTShuel3F3hXgReHsDv2PJCn
MBnMyE_AfePxJ6WJ1obXSIUpSsOQX6wjwdQdOIcXZ853c-NPYMVU-abXJhhLVvvHyNZPi1wcEvjt.eyJraWQiOiAiMTIzNDUifQ

A public PASETO token (corresponds to a JWT signed with a private key)

v2.public.eyJpZCI6ICI0MTBkZjI5Ni04OWQ1LTQzODAtODQyMy02ZjJkNzMwNDA3NDQiLCAibmFtZSI6ICJSYW5kYWxsIERlZ2dl
cyIsICJleHAiOiAiMjAxOS0xMC0xMFQxMTowMzoyNC0wNzowMCJ9xe6hZBYn8IZoJmgL9k1VjTcl7Dz4T-
lo2FvIxeFXQNtNY3QAyCaa5XW-29n-9nV-beU6z7P-YF97lPFvnPfnDA.eyJraWQiOiAiMTIzNDUifQ

The purpose indicates how the token is
secured (HMAC vs digital signature) and

makes explicit how the token should be used

@PhilippeDeRyck

A local PASETO token (corresponds to an HMAC-signed JWT)

v2.local.sIgVm0es9uswZliPdyXOOi99czPbpl41KOUu45e62BvCaL5H3kHNibrbRZkM1-wW091ARzNexLY8g0GZA0-
WCNsgs8GZLClEk5TJbgQjf__yExZRh2qMnqxfVr_KS9WoqKVlU-
WrAG6TRUXZo43OSJQkeNBnB8Gq4rN2A8HYeA3ms20up80dgz2rpY79F9ILvPrAIzxNkDSE51vAxv50BTShuel3F3hXgReHsDv2PJCn
MBnMyE_AfePxJ6WJ1obXSIUpSsOQX6wjwdQdOIcXZ853c-NPYMVU-abXJhhLVvvHyNZPi1wcEvjt.eyJraWQiOiAiMTIzNDUifQ

A public PASETO token (corresponds to a JWT signed with a private key)

v2.public.eyJpZCI6ICI0MTBkZjI5Ni04OWQ1LTQzODAtODQyMy02ZjJkNzMwNDA3NDQiLCAibmFtZSI6ICJSYW5kYWxsIERlZ2dl
cyIsICJleHAiOiAiMjAxOS0xMC0xMFQxMTowMzoyNC0wNzowMCJ9xe6hZBYn8IZoJmgL9k1VjTcl7Dz4T-
lo2FvIxeFXQNtNY3QAyCaa5XW-29n-9nV-beU6z7P-YF97lPFvnPfnDA.eyJraWQiOiAiMTIzNDUifQ

V2 local tokens provide data integrity and
data confidentiality for the payload (using

authenticated encryption)

V2 public tokens provide data integrity
using digital signatures

@PhilippeDeRyck

PASETO PROS AND CONS

Robust and unambiguous algorithms

Purpose of tokens is easier to understand

No specific payload format (e.g., JSON)

No official specification, just an expired draft

No guidance on explicit typing for tokens

No support for encrypting public tokens

Library devs are still responsible for security

@PhilippeDeRyck 87

PASETO ADDRESSES JWT INSECURITIES

PASETO is simpler and less ambiguous than the JWT
specifications, but the lack of use/support makes it

less suited than JWTs

@PhilippeDeRyck

Avoid HMACs and hardcode one digital signature algorithm1

Use explicit typing to indicate the purpose of a token2

Write a wrapper library to encapsulate the dirty details3

FIXING JWTS IN YOUR ARCHITECTURE

https://tools.ietf.org/html/rfc8725

@PhilippeDeRyck

CONCLUSION

@PhilippeDeRyck

Follow current best practices for handling JWTs (or use PASETO)1

Remember that JWTs/PASETOs only represent claims, nothing else2

Carefully analyze token security requirements in your architecture3

KEY TAKEAWAYS

@PhilippeDeRyck

This online course helps you understand
the details of OAuth 2.0 and OpenID Connect

https://courses.pragmaticwebsecurity.com

Thank you for watching!
Connect on social media for more

in-depth security content

@PhilippeDeRyck /in/PhilippeDeRyck

